Abstract:
Mass analyzers and methods of ion detection for a mass analyzer are provided. An electrostatic field generator provides an electrostatic field causing ion packets to oscillate along a direction. A pulse transient signal is detected over a time duration that is significantly shorter than a period of the ion oscillation or using pulse detection electrodes having a width that is significantly smaller than a span of ion harmonic motion. A harmonic transient signal is also detected. Ion intensity with respect to mass-to-charge ratio is then identified based on the pulse transient signal and the harmonic transient signal.
Abstract:
An electron source for electron-induced dissociation in an RF-free electromagnetostatic cell for use installation in a tandem mass spectrometer is provided. An electromagnetostatic electron-induced dissociation cell may include at least one magnet having an opening disposed therein and having a longitudinal axis extending through the opening, the magnet having magnetic flux lines associated therewith, and an electron emitter having an electron emissive surface comprising a sheet, the emitter disposed about the axis at a location relative to the magnet where the electron emissive surface is substantially perpendicular to the magnetic flux lines at the electron emissive surface.
Abstract:
The present invention relates to a device for obtaining the ion source of a mass spectrometer using an ultraviolet diode and a CEM module, having the purpose of inducing initial electron emission using a CEM module and by radiating ultraviolet photons emitted from the ultraviolet diode to the entrance of the CEM module to obtain a large amount of amplified electron beams from the exit and to produce electron beams the emission times of which are accurately controlled at low temperature and at low power. The present invention is characterized by a device for obtaining the ion source of a mass spectrometer using an ultraviolet diode and a CEM module, the device consisting essentially of: an ultraviolet diode emitting ultraviolet rays by means of supplied power; an electron multiplier inducing and amplifying the initial electron emission of ultraviolet photons from the ultraviolet diode and obtaining a large amount of electron beams from the exit; an electron condenser lens condensing the electron beams amplified by the electron multiplier; an ion trap mass separator ionizing gas sample molecules by the electron beams injected through the electron xondensing lens; and an ion detector detecting ions separated from the ion trap mass separator by mass spectrum, wherein the electron multiplier is a CEM module.
Abstract:
A plurality of molecule components included in a gas are to be ionized at the same time by PI method. For instance, a plurality of molecule components included in a gas generated at a certain instance are accurately analyzed in real time based on PI method. A gas analyzer is provided with a gas transfer apparatus for transferring a gas generated from a sample in a sample chamber to an analyzing chamber; an ionizer for ionizing the gas; a quadruple filter for separating ions by mass/charge ratio; and an ion detector for detecting the separated ions. The ionizer is provided with an ionizing region arranged in the vicinity of a gas exhaust of the gas transfer apparatus, and a lamp for applying light on the ionizing region. Since the lamp outputs light which has light directivity lower than that of a laser beam and travels by spreading, the gas entered the ionizing region in the ionizer receives light in a wide range, and the gas components inside are ionized at the same time.
Abstract:
An electron beam apparatus is configured for dark field imaging of a substrate surface. Dark field is defined as an operational mode where the image contrast is sensitive to topographical features on the surface. A source generates a primary electron beam, and scan deflectors are configured to deflect the primary electron beam so as to scan the primary electron beam over the substrate surface whereby secondary and/or backscattered electrons are emitted from the substrate surface, said emitted electrons forming a scattered electron beam. A beam separator is configured to separate the scattered electron beam from the primary electron beam. The apparatus includes a cooperative arrangement which includes at least a ring-like element, a first grid, and a second grid. The ring-like element and the first and second grids each comprises conductive material. A segmented detector assembly is positioned to receive the scattered electron beam after the scattered electron beam passes through the cooperative arrangement. Other embodiments, aspects and features are also disclosed. The apparatus is configured to yield good topographical contrast, high signal to noise ratio, and to accommodate a variety of scattered beam properties that result from different primary beam and scan geometry settings.
Abstract:
The present invention provides a highly reliable charged beam gun designed in consideration for environmental protection, which prevents faulty insulation in a high-voltage connection. An insulating liquid is present in a gap formed between a connecting bushing and a receiving-side flange placed in a vacuum container, and the connecting bushing includes first piping and valve that provide communication between the gap and atmospheric air, and second piping and valve that provide communication between the gap and the atmospheric air, whereby the gap is cut off from the atmospheric air.
Abstract:
An apparatus for producing a beam of charged particles is provided, which comprises an emitter (1, 2) and a switching device (3) adapted to switch between first, second and third beam current levels, wherein the beam current at said first current level is suitable for writing a pixel of an image on the surface of a sample, the beam current at said second current level is suitable for not writing a pixel on the surface of said sample, and the beam current at said third current level is lower than the beam current at the second current level. Furthermore, a method of controlling the beam current of a charged particle beam is provided, comprising the steps of switching the beam current of said charged particle beam between first and second current levels, wherein the beam current at said first current level is suitable for writing a pixel of an image on the surface of a sample and the beam current at said second current level is suitable for not writing a pixel on the surface of said sample, and switching the beam current to a third voltage level, wherein the beam current at said third current level is lower than the beam current at the second current level.
Abstract:
In one aspect, an electron capture dissociation (ECD) device for use in a mass spectrometer is disclosed, which is configured to trap precursor ions and cause the trapped precursor ions (or a portion thereof) to exit the ion trap, via radial excitation thereof by a resonant AC voltage, such that the released precursor ions can enter an ion-electron interaction region in which at least a portion of the precursor ions undergo fragmentation via interaction with an electron beam. The fragment ions are trapped and prevented from undergoing multiple dissociations. Once the fragmentation of the precursor ions is completed and/or after a predefined period, the fragment ions are released from the ECD to be received by downstream components of the mass spectrometer in which the ECD device is incorporated.
Abstract:
Methods and circuits for detecting an ion current in a mass spectrometer are described. A circuit and a method may involve converting, over a length of integration time, the ion current to a voltage ramp by an integrating circuit having a gain setting. The circuit and the method may also involve determining a slope of the voltage ramp. The circuit and the method may also involve determining a magnitude of the ion current based on the slope of the voltage ramp and the gain setting. The circuit and the method may further involves determining an out-of-range state based on the voltage ramp and adjusting the gain setting of the integrating circuit, or the length of integration time or both, in response to the determining of the out-of-range state.