Abstract:
An improved lighting system (10) which in the preferred embodiment includes a cathode (12) having an external surface (34) being coated with a cathode outside film (40) for emitting electrons therefrom. A first anode (14) extends internal to the cathode (12) for heating the cathode (12) to thereby emit electrons from the external surface (34). A second anode (16) is positionally located external to the enclosed cathode (12) for accelerating the electrons emitted from the cathode external surface (34). A bulb member (18) encompasses the cathode (12), the first anode (14), and the second anode (16) in a hermetic type seal. The bulb member (18) has a predetermined gas composition contained therein with the gas composition atoms being ionized by the cathode emitted electrons. The gas composition ionized atoms radiate in the ultraviolet bandwidth of the electromagnetic spectrum. The bulb member (18) is coated with a fluorescent material (20) for intercepting the ultraviolet energy responsive to the ionization of the gas composition atoms. The fluorescent material (20) radiates in the visible bandwidth of the electromagnetic spectrum to give a visible light output.
Abstract:
In a high pressure electric discharge lamp having tungsten electrodes and a discharge envelope filling of mercury, rare gas, and metal halides, activator material consisting essentially of scandium oxide is incorporated in the electrodes, in the form of a solidified melt substantially filling a cavity in the electrode and adherent to the electrode structure, and the halides of the filling consist of iodide(s) and bromide(s), including scandium iodide and/or scandium bromide, in relative proportions such that the atomic ratio of total bromine to total iodine is 20:80 to 60:40. The electrodes are preferably tungsten wire coils, the scandium oxide filling the interior of the coil and penetrating into the interstices between the coil turns. The filling preferably includes sodium iodide and/or sodium bromide, and may include additional iodides and/or bromides. The combination of the scandium oxide activator and the bromide/iodide filling gives high luminous efficacy and good lumen maintenance.
Abstract:
Electrodes for high current electric discharges in low pressure gases comprise a heated filament, coated with emissive material and surrounded by a hollow emitting surface in the shape of a truncated cone. The electric discharge initially starts from a spot on the filament and transfers to a diffuse mode at the small end of the cone structure.High current fluorescent lamps which include the electrodes of the present invention are characterized by rapid transition from the spot mode to the diffuse mode discharge and by low cathode fall voltage.
Abstract:
A gaseous discharge display panel in which in order to display images of good quality with high brightness and high efficiency a discharge unit constituting of a picture element of the display panel is formed as an elongated fine section extending in parallel to the display plane and discharge is produced in the longitudinal direction of the discharge unit so as to display images with the aid of plane discharge. Particularly in order to display color images on the front and/or rear side of the discharge unit there is arranged an insulating sheet to which fluorescent materials are applied in such a manner that the fluorescent materials are opposed near a discharge plasma with a large area and an ultra-violet ray produced by the discharge can excite efficiently the fluorescent materials. The display panel is so constructed that luminescent light from the fluorescent materials having a large surface area can be inspected in the form of the reflected and transmitted light so as to increase the luminous brightness by several times compared with known display panels. Moreover, a cathode of the discharge unit is arranged at a position hidden from the fluorescent materials so as to prevent sputtered cathode materials due to ion bombardment from being applied to the fluorescent materials, so that the fluorescent materials are not blackened and thus the luminous brightness is not decreased.
Abstract:
A high pressure arc radiation torch provided with spaced tubular electrodes having axially aligned gas exit passages; an envelope of transparent material surrounding said electrodes in concentric relation and providing a pressurized gas chamber; one of said tubular electrodes extending into said chamber to form a relatively thin annular region substantially cylindrical in cross section between the outer surface of said tubular electrode and the inner surface of said chamber, and means for feeding gas into said annular region under conditions to provide strong swirl within the chamber resulting in a highly constricted arc column of substantial length.
Abstract:
A rare gas lamp device is disclosed. The rare gas lamp device includes: a lamp body provided in a shape of a cylinder to contain a rare gas and a fluorescent material for emitting light; a plurality of cap electrodes fixed to both ends of the lamp body; a plurality of band electrodes extending in a length direction from the plurality of cap electrodes and arranged opposite to each other with respect to a center axis of the lamp body, and positioned on a circumferential surface of the lamp body, wherein a light-emitting area of the lamp body is an exposed surface of the circumferential surface of the lamp body between the plurality of band electrodes; a spring holder coupled with each of the plurality of cap electrodes and configured to apply a voltage to the band electrodes through the plurality of cap electrodes, the spring holder including a first fixing part configured to support a first side of the cap electrode, a second fixing part configured to support a second side of the cap electrode, and an inserting opening formed between a first end of the first fixing part and a first end of the second fixing part such that the cap electrode is inserted in the inserting opening; and a stopper protruding from each of the plurality of cap electrodes, wherein, when each of the plural of cap electrodes is inserted through the inserting opening, the stopper is interfered by the first end of the first fixing part or the first end of the second fixing part to restrict the light-emitting area from rotating about the center axis of the lamp body.
Abstract:
A disclosed flat type lamp for a photoionization detector includes: a first plate member having a plate shape and having a first surface on which a plurality of discharge cavities is formed; a second plate member isolating the plurality of discharge cavities from the outside by being disposed and sealed on the first surface of the first plate member; electrodes disposed on the first and second plate members and arranged to face each other; and a discharge gas filled in the plurality of discharge cavities and producing vacuum ultraviolet using electric force that is applied through the electrodes.
Abstract:
A laser sustained plasma light source having a cell with a gas volume contained within the cell. At least one laser is directed into the gas volume, for sustaining a plasma within the gas volume, which plasma produces a light. Means are provided for continuously providing the gas volume to the plasma in a laminar flow. A reflector collects the light and provides the light to a desired location.