Abstract:
Disclosed herein are apparatus and methods for selectively depositing molecular ions on nanoscale substrates such as carbon nanotube arrays using electrospray ionization.
Abstract:
A method for forming an electronic device having a multilayer structure, comprising: embossing a surface of a substrate so as to depress first and second regions of the substrate relative to at least a third region of the substrate; depositing conductive or semiconductive material from solution onto the first and second regions of the substrate so as to form a first electrode on the first region and a second electrode on the second region, wherein the electrodes are electrically insulated from each other by the third region.
Abstract:
The present invention relates to a method of fabricating a transparent gas barrier film by using plasma surface treatment and a transparent gas barrier film fabricated according to such method which has an organic/inorganic gradient interface structure at the interface between an organic/inorganic hybrid layer and an inorganic layer. Since the method of the present invention is capable of fabricating a gas barrier film by plasma surface treatment instead of deposition under high vacuum, it can mass-produce a transparent gas barrier film with excellent gas barrier properties in an economical and simple manner. Further, since the transparent gas barrier film fabricated according to the method of the present invention shows excellent gas barrier properties and is free of crack formation and layer-peeling phenomenon, it can be effectively used in the manufacture of a variety of display panels.
Abstract:
A method of producing a gas barrier laminate comprises: the steps of forming an inorganic compound layer on a substrate by vapor-phase film deposition, applying surface roughening treatment to a surface of the inorganic compound layer, and subsequently forming an organic compound layer on the roughened surface of the inorganic compound layer by flash evaporation.
Abstract:
The invention relates to a process for the preparation of a composite material, said composite material comprising a substrate and a layer on the substrate, comprising a vapor-depositing step in which a compound comprising a triazine compound is deposited on the substrate at a pressure below 1000 Pa, whereby the layer is formed, wherein during the vapor-depositing step the temperature of the substrate lies between −15 ° C. and +125 ° C. The invention further relates to a composite material, obtainable by the process as disclosed.
Abstract:
A method for preparing one or more lubricated surfaces of an article to reduce the break-out force and sliding frictional force. A lubricant is applied to one or more surfaces, and the lubricant-coated surface is treated by exposing the surface to an energy source, wherein the energy source is an ionizing gas plasma at about atmospheric pressure, gamma radiation, or electron beam radiation. One or more of the surfaces may be exposed to the ionizing gas plasma at about atmospheric pressure prior to application of the lubricant. Another aspect of the invention is articles produced using one or more methods of the invention.
Abstract:
A method for forming an electronic device in a multilayer structure comprising the steps of: defining a topographic profile in a laterally extending first layer; depositing at least one non-planarizing layer on top of the first layer such that the topographic profile of the surface of the or each non-planarizing layer conforms to that of the laterally extending first layer; and depositing a pattern of at least one additional layer onto the top-most non-planarizing layer, such that the lateral location of the additional layer is defined by the shape of the topographic profile of the non-planarizing layer, and whereby the additional layer is laterally aligned with the topographic profile in the first layer.
Abstract:
A method of pre-treating a mask layer prior to etching an underlying thin film is described. A thin film, such as a dielectric film, is etched using plasma that is enhanced with a ballistic electron beam. In order to reduce the loss of pattern definition, such as line edge roughness effects, the mask layer is treated with a hydrocarbon chemistry or hydrofluorocarbon chemistry or fluorocarbon chemistry or combination of two or more thereof prior to proceeding with the etching process.
Abstract:
A method for preparing one or more lubricated surfaces of an article to reduce the break-out force and sliding frictional force. A lubricant is applied to one or more surfaces, and the lubricant-coated surface is treated by exposing the surface to an energy source, wherein the energy source is an ionizing gas plasma at about atmospheric pressure, gamma radiation, or electron beam radiation. One or more of the surfaces may be exposed to the ionizing gas plasma at about atmospheric pressure prior to application of the lubricant. Another aspect of the invention is articles produced using one or more methods of the invention.
Abstract:
A method of forming a thin film on a substrate to fabricate a microelectronic device, a microelectronic device comprising a thin film deposited according to the method, and a system comprising the microelectronic device. The thin film may include on of a low k thin film, a thin film comprising photoresist, and a sacrificial polymer. The method comprises dispersing a precursor preparation into a spray of charged droplets through subjecting the liquid precursor preparation to electrostatic forces; directing the charged droplets to move toward the substrate; and allowing the charged droplets to generate a beam of gas-phase ions as the charged droplets move toward the substrate. The method further includes directing the gas-phase ions to impinge upon the substrate to deposit the thin film thereon to yield a deposited thin film on the substrate.