Abstract:
An example of an optical accessory configured to produce an optical image depicting spectral characteristics of light. The produced optical image is captured by an image capture sensor of a mobile device. The captured image is processed by the mobile device to produce a measured value corresponding to a lighting-related parameter.
Abstract:
In accordance with an embodiment, a transmitter optical subassembly (TOSA) having one or more recessed mounting regions is disclosed in order to decrease the overall footprint of the TOSA within an optical transceiver housing. The TOSA includes a housing having at least a first sidewall and a second sidewall disposed on opposite sides of the housing relative to each other. The housing further includes a first step portion defined by the first sidewall and a first recessed mounting region extending from about the first step portion along the longitudinal axis towards the second end. The first recessed mounting region is defined by an external surface of the first sidewall that is offset from a surface defining the first step portion by a first offset distance. The first recessed mounting region includes at least one sidewall opening to couple to optical component assemblies.
Abstract:
A spectrograph as disclosed includes a housing, wherein a wall of the housing includes first, second and third openings, an entrance slit located at the first opening and configured to direct light along a first light path portion in the interior of the housing, a dispersive element located at the second opening and configured to receive light from the entrance slit along the first light path portion and direct light along a second light path portion in the interior of the housing, a detector located at the third opening and configured to receive light from the dispersive element along the second light path portion. The detector can include first and second groups of light-sensitive regions. A cover can be positioned to separate the first group of light-sensitive regions from the light path, the second group of light-sensitive regions being exposed to the light path.
Abstract:
An optically-based method and apparatus for monitoring a cannabis sample is provided. The method includes selecting a light source; selecting an optional optical filter; and applying the light source to illuminate a sample, wherein at least one of: light reflected from the sample, light transmitted through the sample, and light produced by fluorescence of the sample, is directed from the sample to the optical filter.
Abstract:
An optical system and apparatus for the diagnosis of a biological sample is disclosed. An embodiment of the apparatus includes an optical probe, a probe head distally connectable to the optical probe, the optical probe further comprising at least one optical element for applying an electromagnetic radiation of a first wavelength to the biological sample, and one or more collection elements positioned proximate the at least one optical element; and an analyzer for analyzing a signal received from the biological sample by the one or more collection elements.
Abstract:
Optical ground tracking apparatus for use with buried object locators or other instruments or devices are disclosed. In one embodiment, a buried object locator includes a locator module disposed in our coupled to the housing to sense a buried object based on emitted magnetic fields, and a surface tracking module for determining motion information of the buried object locator based on light reflected from a tracking surface.
Abstract:
A spectrometer includes a package having a stem and a cap, an optical unit disposed on the stem, and a lead pin for securing the optical unit to the stem. The optical unit includes a dispersive part for dispersing and reflecting light entering from a light entrance part of the cap, a light detection element having a light detection part for detecting the light dispersed and reflected by the dispersive part, a support for supporting the light detection element such that a space is formed between the dispersive part and the light detection element, and a projection protruding from the support, the lead pin being secured to the projection. The optical unit is movable with respect to the stem in a contact part of the optical unit and the stem.
Abstract:
There is disclosed a calibrator configured to calibrate a color of a screen of a display device includes an absorption plate formed of a transformable material, comprising a bottom surface attached to the screen of the display device in a vacuum absorption method; a control portion configured to leave space a first portion of the absorption plate from the screen of the display device; a fixed portion configured to press a second portion of the absorption plate to the screen of the display closely; a rotary portion configured to rotatably coupled to the fixed portion in a horizontal direction and to move the control portion in a vertical direction of the display device, when it is rotated; and a circuit unit mounted in the fixed portion to calibrate the color of the display device, such that the calibrator may be fixed in a precise position of the screen and that the screen calibration can be performed precisely and that the calibrator can be attached even to a tilted screen and used widely.
Abstract:
Various novel sampling heads and interface fittings are disclosed herein adapted for use with handheld RAMAN or other material evaluating devices or analyzers using radiation or electromagnetic energy to identify sampled materials. In particular, the interface fittings or members facilitate measurement of irregularly shaped or very small materials to be sampled.
Abstract:
A spectroscopic device includes a lamp house accommodating a light source inside, a spectrometer configured to disperse light from the lamp house, a temperature measurement means for measuring a temperature of the spectrometer, a heating means for heating the spectrometer, a storage means and a control unit. The storage means stores the detection temperature of the temperature measurement means at a time when an optical axis is stable in the spectrometer in a state where the light source is illuminated. The control unit is configured to control operation of the heating means, and to cause the heating means to operate, when the light source is illuminated from a light-off state, until a detection temperature of the temperature measurement means reaches the detection temperature stored in the storage means.