Abstract:
The invention relates to a spectrometer having a plurality of dispersive optical elements arranged such that electromagnetic radiation entering into the spectrometer is incident on the dispersive optical elements to be split spectrally there; the dispersive optical elements differ from one another with respect to their spatial positions and/or their spectral splitting capabilities; the dispersive optical elements are arranged such that the spectra generated by the respective dispersive optical elements by the splitting of the electromagnetic radiation extend in the same direction and are adjacent to one another transversely to this direction of the spectral splitting; and a detector resolving spatially in two dimensions and being located in the optical path of the split electromagnetic radiation for the detection of at least some respective part sections of the spectra. The invention furthermore relates to an analysis apparatus for determining absorption properties of solid, liquid or gaseous substances or substance mixtures.
Abstract:
A novel device, method and systems disclosed managing the thermal challenges of LIBS laser components and a spectrometer in a handheld structure as well the use of simplified light signal collection which includes a bare fiber optic to collect the emitted light in close proximity to (or in contact with) the test material. In one example embodiment of the handheld LIBS device, a burst pulse frequency is 4 kHz is used resulting in a time between pulses of about 250 μs which is a factor of 10 above that of other devices in the prior art. In a related embodiment, an active Q-switched laser module is used along with a compact spectrometer module using a transmission grating to improve LIBS measurement while substantially reducing the size of the handheld analyzer.
Abstract:
A micromechanical device for projecting an image and for analyzing an optical spectrum and a corresponding manufacturing method. The device includes: a first light providing unit by which a first light beam is providable to the device; a diffraction unit for diffract the first light beam provided to the device as a function of a diffraction property of the diffraction unit; a second light providing unit by which a second light beam is providable to the device; a micromirror by which the second light beam provided to the device is variably deflectable as a function of a position and/or an orientation of the first micromirror; and a first actuator by which the adjustable diffraction property of the optical diffraction unit and also the position and/or the orientation of the micromirror are adjustable.
Abstract:
A linear frequency domain grating and a multiband spectrometer having the same. The linear frequency domain grating includes a dispersive optical element and a diffractive optical element being substantially in contact with the dispersive optical element or being substantially integrated with the dispersive optical element, configured to receive a beam of incident light along an incident optical path, and diffract and disperse it into its constituent spectrum of frequencies of the light that is output from the dispersive optical element along an output optical path, such that the output light has a spatial distribution on a focal plane in the output optical path that is a linear function of the frequency. The linear frequency domain grating is a transmissive-type grating or a reflective-type grating, depending on whether the incident optical path and the output optical path are in different sides or the same side of the diffractive optical element.
Abstract:
The following description is directed to systems and methods for digital cameras. In one embodiment, a camera can comprise an optical system, a sensor array, a color spreader, a memory, and a controller. The optical system can focus an image. The sensor array comprises a plurality of pixels and can be configured to capture image data. The color spreader can be positioned between the optical system and the sensor array. The color spreader can comprise an array of segments, where each respective segment can be configured to spread a spectrum of incident light toward a corresponding group of pixels using diffraction or refraction. The memory can store one or more spatial models. The controller can be coupled to the sensor array and the memory. The controller can be configured to reconstruct spectral and spatial components of the image from the captured image data and one of the spatial models.
Abstract:
Exemplary embodiments of apparatus and method according to the present disclosure are provided. For example, an apparatus for providing electromagnetic radiation to a structure can be provided. The exemplary apparatus can include a first arrangement having at least two wave-guides which can be configured to provide there through at least two respective electro-magnetic radiations with at least partially different wavelengths from one another. The exemplary apparatus can also include a dispersive second arrangement structured to receive the electro-magnetic radiations and forward at least two dispersed radiations associated with the respective electro-magnetic radiations to at least one section of the structure. The wave-guide(s) can be structured and/or spatially arranged with respect to the dispersive arrangement to facilitate at least partially overlap of the dispersed radiations on the structure. In addition, another arrangement can be provided which can include at least two further wave-guides which can be configured to receive the electro-magnetic radiations from the dispersive arrangement. Each of the further wave-guides can be structured and/or spatially arranged with respect to the dispersive arrangement to facilitate a receipt of a different one of the such electro-magnetic radiations as a function of wavelengths thereof.
Abstract:
An optical device includes: a diffraction grating; a depolarization plate containing a birefringent material to eliminate polarization dependency of the diffraction grating; and an optical corrector configured to optically correct diffraction angle deviation of diffracted light due to diffraction at the diffraction grating. The optical corrector may be configured to bend back the diffracted light diffracted by the diffraction grating to re-emit the light to the diffraction grating.
Abstract:
A spectroscopic analysis device based on Brillouin dynamic grating and its analysis method, which provides high resolution and large measuring range at the same time. The device includes a laser device (1), a fiber optic coupler device (2), a first fiber amplifier device (3), a first isolator (4), a first polarization controller (5), a second polarization controller (6), a single-sideband modulation modulator (7), a second fiber amplifier device (8), a second isolator (9), a third polarization controller (10), a single-mode fiber (11), a polarization beam splitter (12), a circulator (13), a photodetector (14), a data acquisition card (15), a fourth polarization controller (16) and a microwave source (17). The method utilizes the Brillouin scattering of two beams of pump light in optical fiber forming Brillouin dynamic gratings as the spectral element and achieve a sub-MHz resolution.
Abstract:
A spectrum analyzer includes an input member, a predetermined output plane and a reflection type diffraction grating. The input member receives an optical signal. The reflection type diffraction grating includes a non-Rowland circle curved grating profile curved surface and a plurality of diffraction structures. The diffraction structures, each having a pitch and disposed on the grating profile curved surface, are configured to separate the optical signal into a plurality of spectral components. At least some pitches of the spectral components are different from each other. One of the spectral components indicating a central wavelength is emitted to the predetermined output plane in a direction substantially perpendicular to the predetermined output plane. The grating profile curved surface is used for focusing the spectral components on the predetermined output plane.
Abstract:
An assembly (12) for rapid thermal data acquisition of a sample (10) includes a laser source (14), a light sensing device (26), and a control system (28). The laser source (14) emits a laser beam (16) that is directed at the sample (10), the laser beam (16) including a plurality of pulses (233). The light sensing device (26) senses mid-infrared light from the sample (10), the light sensing device (26) including a pixel array (348). The control system (28) controls the light sensing device (26) to capture a plurality of sequential readouts (402) from the pixel array (348) with a substantially steady periodic readout acquisition rate 405. The control system (28) can generate a spectral cube (13) using information from the readouts (402).