Abstract:
The invention provides systems and methods for detecting aerosols. The systems and methods can be used to detect harmful aerosols, such as, bio-aerosols.
Abstract:
A spectrally tunable optical detector and methods of manufacture therefore are provided. In one illustrative embodiment, the tunable optical detector includes a tunable bandpass filter, a detector and readout electronics, each supported by a different substrate. The substrates are secured relative to one another to form the spectrally tunable optical detector.
Abstract:
A spectral reflectance sensor including: a light source for emitting a modulated beam of red light; a light source for emitting a modulated beam of near infrared light; a receiver for receiving reflected light produced by either the red source or the near infrared source; a receiver for receiving incident light from either the red source or the infrared source; a signal conditioner responsive to the modulation such that the signals produced by the receivers in response to reflected and incident light from the source can be discriminated from signals produced by ambient light; and a microprocessor having an input such that the microprocessor can determine the intensities of incident red light, reflected red light; incident near infrared light; and reflected near infrared light. From these intensities, and by knowing the growing days since emergence or planting, the sensor can calculate the mid-growing season nitrogen fertilizer requirements of a plant.
Abstract:
Multiple wavelength spectrometers can be tuned to particular wavelengths. A dual wavelength spectrometer can include a spectrometer configured to detect at least some wavelengths that fall within the ultraviolet (UV) spectrum and a spectrometer configured to detect at least some wavelengths that fall within the visible spectrum. In some embodiments, a UV light spectrometer and a visible light spectrometer are disposed adjacent one another on a single substrate. A dual wavelength spectrometer can be used for analyzing bioaerosols, as well as for numerous other applications.
Abstract:
A gas sensor, whose chamber uses filters and choppers in either a semicircular geometry or annular geometry, and incorporates separate infrared radiation filters and optical choppers. This configuration facilitates the use of a single infrared radiation source and a single detector for infrared measurements at two wavelengths, such that measurement errors may be compensated.
Abstract:
The measuring apparatus of the present invention measures the optical properties of a sample containing a fluorescent material by irradiating the sample with light containing a UV component. In the present invention are provided a first light source for irradiating the sample with light containing a UV component, a second light source for irradiating the sample with light which does not contain a UV component, light receiving element for receiving light reflected from the sample irradiated by said light sources, and output means for generating weighting coefficients for weighting the output of the light receiving element during emission by each light source. The optical properties of the sample is calculated based on the output of the light receiving element for a first light source, output of the light receiving element for a second light source, and the respective weighting coefficients. Accordingly, measurement values can be obtained which are equal to values when measurement is accomplished with a standard light source.
Abstract:
A monochromator utilizing a single light source productive of a uniformly intense, single beam, single wavelength coaxial beam output or alternatively, a single beam selected dual wavelength coaxial beam output.
Abstract:
A monochromator for the simultaneous selection and utilization of two wavelengths of small and constant band width, whereby the wavelengths may be selected and rapidly changed as desired. The monochromator is particularly suitable for the simultaneous scanning of a chromatogram (e.g. a thin-layer chromatogram) with two wavelengths to determine the concentration of a certain material independently of disturbing influences of the matrix. This is done by photosensors which are adapted to be led on pivot arms on a circular arc about the element dispersing the light.