Abstract:
Apparatus and method for making circuitized substrates using a continuous roll format in which a layer of conductor is fed into the apparatus, layers of photo-imageable dielectric are applied to opposite sides of the conductor layer, thru-holes are formed through the composite, and then metal layers are added over the dielectric and then patterns (e.g., circuit) are formed therein. Several operations are performed in addition to these to form the final end product, a circuitized substrate (e.g., printed circuit board), all while the conductor layer of the product is retained in a solid format, up to the final separation from the continuous layer.
Abstract:
A semiconductor system having a substrate (101) including a rigid insulating interposer (110) with a high modulus and a top (140) and a bottom (150) low-modulus tape with flip-attached semiconductor chips (120, 130). The assembled chips, with the passive surfaces facing each other, are located in an opening (114) of the interposer, which has a thickness (111) equal to or smaller than the sum of the assembled two chips. Adhesive material (160) holds the tapes parallel to the interposer and the chip surfaces together. Solder balls (180) and discrete components (170) may be attached to the outside surfaces of the tapes.
Abstract:
A multi-layer printed circuit board including a core structure comprising resin layers and conductor circuits sandwiched by the resin layers, the core structure having a first surface and a second surface on an opposite side of the first surface, a first conductor layer including conductor circuits formed on the first surface of the core structure, and a second conductor layer including conductor circuits formed on the second surface of the core structure. The core structure includes a first via hole and a second via hole, and the first via hole and the second via hole include a metal filling up to the respective top of openings formed in the resin layers, respectively, sandwich one or more conductor circuits in the core structure and are positioned vertically to form a through hole electrically connecting respective ones of the conductor circuits of the first and the second conductor layers.
Abstract:
The present invention provides all organic fully-packaged miniature bandpass filters, baluns, diplexers, multiplexers, couplers and a combination of the above manufactured using liquid crystalline polymer (LCP) and other multilayer polymer based substrates. These devices are manufactured using one or more LCP layers having integrated passive components formed thereon to provide the density and performance necessary for multi-band wireless devices. In the designs involving multiple LCP layers, the LCP layers are separated by prepeg layers. In accordance with an aspect of the present invention, coplanar waveguide, hybrid stripline/coplanar waveguide and/or microstrip topologies are utilized to form the integrated passive components, and the devices can be mass produced on large area panels at least 18 inches by 12 inches with line widths smaller than 10 um.
Abstract:
A multilayer printed wiring board in which interlayer insulation layer and conductive layer are formed on a multilayer core substrate composed of three or more layers, having through holes for connecting the front surface with the rear surface and conductive layers on the front and rear surfaces and conductive layer in the inner layer to achieve electric connection through via holes, the through holes being composed of power source through holes, grounding through holes and signal through holes connected electrically to a power source circuit or a grounding circuit or a signal circuit of an IC chip, when the power source through holes pass through the grounding conductive layer of the inner layer in the core substrate, of the power source through holes, at least a power source through hole just below the IC having no conductive circuit extending from the power source through hole in the grounding conductive layer.
Abstract:
A package substrate having embedded capacitor is provided. The package substrate includes a first core circuit board, at least one embedded capacitor, a second core circuit board and a dielectric layer. The first core circuit board has at least one metal layer, and the first core circuit board has at least one first conductive through hole connected to the metal layer. At least one embedded capacitor is embedded in the first core circuit board and connected to the metal layer. The second core circuit board has at least one wiring layer, and the second core circuit board has at least one second conductive through hole connected to the wiring layer. The dielectric layer is laminated between the first core circuit board and the second core circuit board.
Abstract:
The present invention provides a circuit board structure having an embedded capacitor and a method for fabricating the same. The circuit board structure includes a core layer board with at least one surface having non-penetrating first and second grooves, a circuit layer and a first electrode plate formed in the first and second grooves of the core layer board respectively and being flush with the core layer board; a high dielectric material layer formed on the core layer board, the circuit layer and the first electrode plate; a second electrode plate formed on the high dielectric material layer and corresponding to the first electrode plate, thereby forming a capacitor by the first and second electrode plates and the high dielectric material layer. The high dielectric material layer is formed on a plane surface so as to eliminate poor filling and improve reliability.
Abstract:
A multilayer printed wiring board including a core substrate, a built-up wiring layer having a first surface in contact with the substrate and a second surface, the second surface including a mounting area for mounting a semiconductor device, the built-up layer including circuits and insulating layers, first through-hole conductors formed in a first portion of the substrate which corresponds to the mounting area, second through-hole conductors formed in a second portion of the substrate which corresponds to an area of the second surface other than the mounting area, third through-hole conductors formed in a processor core area of the first portion of the substrate which corresponds to a processor core section of the device, and pads provided on the second surface. The first conductors have a pitch smaller than a pitch of the second conductors, and the third conductors have a pitch smaller than the pitch of the first conductors.
Abstract:
Partitioned vias, interconnects, and substrates that include such vias and interconnects are disclosed herein. In one embodiment, a substrate has a non-conductive layer and a partitioned via formed in a portion of the non-conductive layer. The non-conductive layer includes a top side, a bottom side, and a via hole extending between the top and bottom sides and including a sidewall having a first section a second section. The partitioned via includes a first metal interconnect within the via on the first section of the sidewall and a second metal interconnect within the via hole on the second section of the sidewall and electrically isolated from the first metal interconnect. In another embodiment, the first metal interconnect is separated from the second metal interconnect by a gap within the via hole.
Abstract:
Apparatus and method for making circuitized substrates using a continuous roll format in which a layer of conductor is fed into the apparatus, layers of photo-imageable dielectric are applied to opposite sides of the conductor layer, thru-holes are formed through the composite, and then metal layers are added over the dielectric and then patterns (e.g., circuit) are formed therein. Several operations are performed in addition to these to form the final end product, a circuitized substrate (e.g., printed circuit board), all while the conductor layer of the product is retained in a solid format, up to the final separation from the continuous layer.