Abstract:
The present invention provides multilayer coated substrates, prepared using primer and/or sealer compositions comprising waterborne curable film-forming compositions, in turn comprising: a) an aqueous dispersion of a pigment and i) polymeric urethane-shell particles having a care-shell morphology and having hydroxyl functional groups, wherein the core is prepared from a monomer mixture comprising hydrophobic, ethylenically unsaturated monomers and the shell comprises a polyurethane or polyurethane-urea polymer; or ii) polymeric acrylic-shell particles having a core-shell morphology and having hydroxyl functional groups, wherein the core is prepared from a monomer mixture comprising hydrophobic, ethylenically unsaturated monomers and the shell is prepared from a monomer mixture comprising hydrophilic, ethylenically unsaturated monomers; b) a polyisocyanate crosslinking agent; and optionally c) a hydroxyl functional, water dispersible acrylic polymer.
Abstract:
This invention relates to an elastomeric article with improved lubricity and donnablity and reduced stickiness/tackiness. According to the methods of the invention, the internal surface of the elastomeric article is coated with a polyisoprene coating. The coating of the invention is formed from synthetic polyisoprene rubber that may or may not contain minor amounts of other components. The coating is preferably directly bonded to the underlying elastomeric article.
Abstract:
A method of through-thickness reinforcing a laminated material is disclosed, in which a reinforcing element is coated with a thermoplastic layer. The reinforcing element is inserted into a base material, and a matrix material, such as a polymeric, is included in the base material. The combination is then cured, or heated, such that the thermoplastic layer and the matrix material diffuse into each other, thereby forming an interphase region around the reinforcing element. This interphase region helps to prevent cracks from propagating from the reinforcing element.
Abstract:
A stamp for making a microarray of biomolecules, wherein the stamp has a stamp body having a stamping surface for stamping the biomolecules onto a substrate, a plurality of reservoirs for liquids having the biomolecules, wherein each of the reservoirs has a bottom wall and a plurality of channels extending between each of the bottom wall and the stamping surface, wherein each of the reservoirs and the channels has a macroporous hydrogel and wherein the stamping surface is provided with a hydrophobic coating.
Abstract:
The invention relates to a method for functionalising a surface of a solid substrate with at least one acrylic acid polymer layer, said method including the steps of: i) placing the surface in contact with a solution having of at least one acrylic acid homopolymer, a solvent and, optionally, metal salts; ii) removing the solvent from the solution in contact with the surface; and iii) binding the polymer to the surface by thermal treatment.
Abstract:
The present invention relates to a coating composition comprising at least one binder (A) comprising at least one polymeric resin (A1) and at least one crosslinking agent (A2), at least one anticorrosion pigment (B), and at least one organic solvent (C), where (B) is an alloy of Zn and Mg and optionally at least one further metal and/or semimetal, the coating composition having a pigment volume concentration (PVC) in a range from 5.0% to 25.0%, and comprising the anticorrosion pigment (B) in an amount in a range from 5.0 to 25.0 wt %, based on the total weight of the coating composition, to the use thereof for the at least partial coating of a metallic substrate with a primer coat, to a method for the at least partial coating of such a substrate with such a primer coat, to a substrate at least partially coated therewith, and to a component or article produced from such a substrate.
Abstract:
A process for producing a transparent conductive film, comprising (a) providing a graphene oxide gel; (b) dispersing metal nanowires in the graphene oxide gel to form a suspension; (c) dispensing and depositing the suspension onto a substrate; and (d) removing the liquid medium to form the film. The film is composed of metal nanowires and graphene oxide with a metal nanowire-to-graphene oxide weight ratio from 1/99 to 99/1, wherein the metal nanowires contain no surface-borne metal oxide or metal compound and the film exhibits an optical transparence no less than 80% and sheet resistance no higher than 300 ohm/square. This film can be used as a transparent conductive electrode in an electro-optic device, such as a photovoltaic or solar cell, light-emitting diode, photo-detector, touch screen, electro-wetting display, liquid crystal display, plasma display, LED display, a TV screen, a computer screen, or a mobile phone screen.
Abstract:
A method for coating metallic surfaces of substrates with surfaces of aqueous coating) compositions in the form of a dispersion and/or a suspension containing at least one stabilized binder and a gelling agent, the cations having been dissolved out of the metallic surface of the substrate in a pretreatment stage and/or during the contacting. The invention further relates to such a coating based on an ionogenic gel, in which the coating is formed by a process further described herein.
Abstract:
A pour-out member or, for example, a container has a pour-out port 1a through which a viscous fluid is discharged, wherein a hydrophobic layer of fine hydrophobic inorganic particles 20 is selectively formed on an upper end surface of a base member forming the pour-out port 1a. The hydrophobic layer formed on the pour-out port 1a of the pour-out member is not removed or broken through the repetitive use, and stably exhibits a function of preventing the liquid from creeping over extended periods of time.
Abstract:
This invention relates to an elastomeric article with improved lubricity and donnablity and reduced stickiness/tackiness. According to the methods of the invention, the internal surface of the elastomeric article is coated with a polyisoprene coating. The coating of the invention is formed from synthetic polyisoprene rubber that may or may not contain minor amounts of other components. The coating is preferably directly bonded to the underlying elastomeric article.