Abstract:
The invention relates to a method for functionalising a surface of a solid substrate with at least one acrylic acid polymer layer, said method including the steps of: i) placing the surface in contact with a solution having of at least one acrylic acid homopolymer, a solvent and, optionally, metal salts; ii) removing the solvent from the solution in contact with the surface; and iii) binding the polymer to the surface by thermal treatment.
Abstract:
Micro-channel-cooled UV curing systems and components thereof are provided. According to one embodiment, a lamp head module includes a high aspect ratio, high fill factor array of light emitting devices and a submount. The array includes multiple groups of electrically seriesed light emitting devices that are connected in electrical parallel. The submount is of monolithic construction and includes multiple L-shaped patterned circuit material layers. Each of the L-shaped patterned circuit material layers includes an arm portion and a stem portion. The arm portion functions as a light emitting device bond pad and the stem portion functions as a wire bond pad and a circuit trace. Each light emitting device of a group is affixed to a corresponding arm portion of the submount. The stem portions are located external to the array, run parallel to the length of the array and perform a primary current carrying function for current flow between adjacent light emitting devices of the group.
Abstract:
This disclosure relates to an ink composition (e.g., a hot melt ink composition or a radiation curable ink composition) that has a relatively low conductivity. This disclosure also relates to a continuous printing process using such a composition and a product containing such a composition.
Abstract:
An imprint mold has a base 2, an uneven structure area A set on a surface 2a of the base 2, a measurement area 6 set in the uneven structure area A, and a measurement mark structure 7 positioned in the measurement area 6, the measurement mark structure 7 having a plurality of pattern sets 7a each having a line/space shape. With this, a deformation occurring in a resin layer at the time of release of the resin layer from the mold is prevented, and a measurement mark can be formed with high accuracy.
Abstract:
An applicator for application onto and embossing microprofiling of a fluidic medium on a substrate, in particular in the aerospace sector, and a corresponding application device having such an applicator. The applicator has a circumferentially moving die that has an embossing profile, a press for the die and a stabilizing device, in particular a hardening device, for the applied medium. In addition, the applicator has a hollow support body, surrounded by the die at a distance forming a gap, the press being arranged in the gap. The application device has, in addition to the applicator, a handling device for a relative movement between the applicator and a workpiece.
Abstract:
A process to apply pressure sensitive adhesive to cut sheet media and eliminate a separate release liner. A Silicone release layer is applied (post fuser) on a top surface of the media and then UV cured. A pressure sensitive adhesive layer is applied next. The cut sheets are then stacked and a compressive force is applied that transfers the pressure sensitive adhesive from one sheet to another and helps hold the stack together.
Abstract:
A method and equipment to form a digital print by applying dry colourants on a surface of a panel, bonding a part of the colourants with a binder and removing the non-bonded colourants from the surface. The method of forming a digital print on a surface of a panel includes displacing the panel under a digital drop application head, applying a liquid binder with the digital drop application head on the surface; applying colourants on the liquid binder and the surface; bonding a part of the colourants to the surface with the liquid binder; removing non-bonded colourants from the surface such that a digital print is formed by the bonded colourants; and applying heat and pressure on the panel, the surface and the bonded colorants such that the colourants are permanently bonded to the surface.
Abstract:
A mobile radiation system is provided. The mobile radiation system comprises a mobile radiation device coupled to a control unit; a radiation blocker having an adaptor opening for receiving said mobile radiation device when said mobile radiation device is in a seated position on said radiation blocker; and a mobile carrier comprising a first compartment for housing said radiation blocker, a second compartment for housing said control unit, and a carrier motion device. The adaptor opening can dimensionally fit the mobile radiation device to block radiations from the mobile radiation device when said mobile radiation device is in the seated position. The mobile radiation device can produce radiation having peak radiation wavelength in a range of from about 250 nm to about 450 nm and can have a peak irradiation power in a range of from about 0.5 W/cm2 to about 10 W/cm2.
Abstract translation:提供了一种移动辐射系统。 移动辐射系统包括耦合到控制单元的移动辐射装置; 当所述移动辐射装置处于所述辐射阻挡器上的就座位置时,具有用于接收所述移动辐射装置的适配器开口的辐射阻断器; 以及可移动的载体,其包括用于容纳所述辐射阻挡器的第一隔室,用于容纳所述控制单元的第二隔室和载体运动装置。 当所述移动辐射装置处于就座位置时,适配器开口可以尺寸上适合移动辐射装置以阻挡来自移动辐射装置的辐射。 移动辐射装置可以产生具有在约250nm至约450nm范围内的峰值辐射波长的辐射,并且可以具有在约0.5W / cm 2至约10W / cm 2范围内的峰值照射功率。
Abstract:
A method of manufacturing a scratch resistant, touch sensor comprising: (1) applying a non-polymer protective coating solution to a touch sensor; and (2) forming a cross-linked polymer structure by curing the protective coating solution.
Abstract:
A method (400) of additively manufacturing a composite part (102) is disclosed. The method (400) comprises depositing, via a delivery guide (112), a segment (120) of a continuous flexible line (106) along a print path (122). The continuous flexible line (106) comprises a non-resin component (108) and a thermosetting-epoxy-resin component (110) that is partially cured. The method (400) also comprises maintaining the thermosetting-epoxy-resin component (110) of at least the continuous flexible line (106) being advanced toward the print path (122) via the delivery guide (112) below a threshold temperature. The method (400) further comprises delivering a predetermined or actively determined amount of curing energy (118) to the segment (120) of the continuous flexible line (106) at a controlled rate while advancing the continuous flexible line (106) toward the print path (122) to at least partially cure the segment (120) of the continuous flexible line (106).