Abstract:
Disclosed herein is an easy and well-integrated method of etching features to different depths in a crystalline substrate, such as a single-crystal silicon substrate. The method utilizes a specialized masking process and takes advantage of a highly selective etch process. The method provides a system of interconnected, variable depth reservoirs and channels. The plasma used to etch the channels may be designed to provide a sidewall roughness of about 200 nm or less. The resulting structure can be used in various MEMS applications, including biomedical MEMS and MEMS for semiconductor applications.
Abstract:
The invention provides a device for adhering cells in a specific and predetermined position, and associated methods. The device includes a plate defining a surface and a plurality of cytophilic islands that adhere cells, isolated by cytophobic regions to which cells do not adhere, contiguous with the cytophilic islands. The islands or the regions or both may be formed of a self-assembled monolayer (SAM).
Abstract:
A package structure and its manufacturing method are provided. The package structure includes a substrate with a recess, and a first MEMS chip, a first intermediate chip, a second MEMS chip and a first capping plate sequentially formed on the substrate. The lower surface of the first MEMS chip has a first sensor or a microactuator. The upper surface of the second MEMS chip has a second sensor or a microactuator. The first intermediate chip has a through-substrate via, and includes a signal conversion unit, a logic operation unit, a control unit, or a combination thereof. The package structure includes at least one of the first sensor and the second sensor.
Abstract:
A method for manufacturing at least one membrane system for a micromechanical sensor for the calorimetric detection of gases. A wafer-shaped substrate is provided. At least one reference volume is introduced from a front side into the wafer-shaped substrate with the aid of a surface or volume micromechanical process while forming a reference membrane covering the reference volume at least in some areas. At least one measuring volume, which is adjacent to the at least one reference volume, is introduced into the substrate from a back side or the front side of the wafer-shaped substrate while forming a measuring membrane. A wafer-shaped cap substrate is applied onto the front side of the wafer-shaped substrate. A membrane system and a component are described.
Abstract:
A downhole sensor system includes a first sensor package having a substrate, an integrated circuit chip mounted to the substrate, the integrated circuit chip including a processor, a transducer chip mounted to the integrated circuit chip, and a plurality of sensors configured to measure at least shock, pressure, temperature, and humidity. At least one of the plurality of sensors is mounted to the transducer chip such that a stack is formed at least from the substrate, the integrated circuit, the transducer chip, and the sensor. The plurality of sensors are in communication with the processor.
Abstract:
A MEMS gas sensor (A), array thereof, and preparation method therefor. The MEMS gas sensor comprises a first substrate (A2) provided with a first cavity (A1), and N gas detection assemblies (A3) provided at an opening of A1, each A3 comprises: a supporting arm (A31) and a gas detection part (A32) provided on the A31; the A32 comprises a strip-shaped heating electrode part (A321), an insulating layer (A322), a strip-shaped detection electrode part (A323), and a gas-sensitive material part (A324) that are stacked sequentially; the A323 comprises a first detection electrode part (A323-1) and a second detection electrode part (A323-2) with a first opening (A325) therebetween; the A324 is provided at the A325; a first end of the A324 is connected to the A323-1, a second end of the A324 is connected to the A323-2; strip-shaped heating electrode parts in each A3 are connected sequentially to form a heater (A8).
Abstract:
A biosensor package structure is provided. The biosensor package structure includes a protection layer and a redistribution layer disposed over the protection layer. The protection layer has a plurality of openings exposing the redistribution layer. The biosensor package structure includes at least one die disposed over the protection layer and the redistribution layer, a plurality of pads disposed on a lower surface of the die, and a plurality of vias disposed between the pads and the redistribution layer. The biosensor package structure includes a dielectric material disposed over the protection layer and the redistribution layer and adjacent to the die, pads and vias. The biosensor package structure further includes at least one biosensing region at the top portion of the die. The top surfaces of the pads are disposed at a level that is lower than the top surface of the biosensing region and higher than the bottom surface of the die.
Abstract:
This invention describes the structure and function of an integrated multi-sensing system. Integrated systems described herein may be configured to form a microphone, pressure sensor, gas sensor, multi-axis gyroscope or accelerometer. The sensor uses a variety of different Field Effect Transistor technologies (horizontal, vertical, Si nanowire, CNT, SiC and III-V semiconductors) in conjunction with MEMS based structures such as cantilevers, membranes and proof masses integrated into silicon substrates. It also describes a configurable method for tuning the integrated system to specific resonance frequency using electronic design.
Abstract:
A method for manufacturing a chip that includes a microchannel is described, wherein the method includes the steps of: fixing a cationic polymer having a quaternary onium group to at least one surface of each of a pair of resin substrates; and joining the resin substrates together on the surfaces on which the cationic polymer has been fixed.
Abstract:
The invention is a process for producing an electromechanical device including a movable portion that is able to deform with respect to a fixed portion. The process implements steps based on fabrication microtechnologies, applied to a substrate including an upper layer, an intermediate layer and a lower layer. These steps are: a) forming first apertures in the upper layer; b) forming an empty cavity in the intermediate layer, which step is referred to as a pre-release step because a central portion of the upper layer lying between the first apertures is pre-released; c) applying what is called a blocking layer to the upper layer, this layer covering the first apertures, the blocking layer and the central portion together forming a suspended microstructure above the empty cavity; d) producing a boundary trench in the suspended microstructure, so as to form, in this microstructure, a movable portion and a fixed portion, the movable portion forming a movable member of the electromechanical device.