Abstract:
In one embodiment, a method and system is provided for detecting target materials using a combination of stroboscopic signal amplification and Raman spectroscopy techniques.
Abstract:
Color measuring systems and methods are disclosed. Perimeter receiver fiber optics are spaced apart from a central source fiber optic and receive light reflected from the surface of the object being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object being measured. Under processor control, the color measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention.
Abstract:
A system for determining an analyte concentration in a fluid sample (e.g., glucose) comprises a light source, a detector, and a central processing unit. The detector is adapted to receive spectral information corresponding to light returned from the fluid sample being analyzed and to convert the received spectral information into an electrical signal indicative of the received spectral information. The central processing unit is adapted to compare the electrical signal to an algorithm built upon correlation with the analyte in body fluid. The algorithm is adapted to convert the received spectral information into the analyte concentration in body fluid. Spectral information is delivered from the central processing unit to the light source and used to vary the intensity and timing of the light to improve the accuracy of conversion into analyte concentration.
Abstract:
A miniaturized spectrometer/spectrophotometer system and methods are disclosed. A probe tip including one or more light sources and a plurality of light receivers is provided. A first spectrometer system receives light from a first set of the plurality of light receivers. A second spectrometer system receives light from a second set of the plurality of light receivers. A processor, wherein the processor receives data generated by the first spectrometer system and the second spectrometer system, wherein an optical measurement of a sample under test is produced based on the data generated by the first and second spectrometer systems.
Abstract:
This disclosure relates to a method that includes receiving infrared adsorption absorption information for a sample, processing the infrared adsorption absorption information for the sample to determine an identity of the sample, generating a reference signature for the identified sample, and distributing the reference signature for the identified sample to a plurality of handheld measurement devices via cellular connections with the handheld measurement devices.
Abstract:
In accordance with an example embodiment of the present invention, apparatus comprising a waveguide and a spectral dispersion element, the apparatus being configured to be moveably attachable to a portable device, the portable device comprising a radiation sensing element and a radiation source, the apparatus being configured to be moveably attachable to the portable device to provide a first configuration in which the waveguide is positioned to transmit radiation from the radiation source towards an analyte region and/or from the analyte region towards the dispersion element; and such that the dispersion element is positioned to disperse radiation from the analyte region to form a spectrum which is provided towards the radiation sensing element for spectral analysis, and a second configuration in which the radiation sensing element and radiation source are able to capture and illuminate a scene for image capture.
Abstract:
We disclose an apparatus comprising: a hand-portable optical analysis unit including an optical interface; and a device configured to receive and releasably engage the hand-portable optical analysis unit. The device comprises: a housing; a sample unit in the housing; and a resilient member configured to bias the sample unit and the hand-portable analysis unit towards each other when the hand-portable optical analysis unit is received in the device to compress a sample disposed between the sample unit and the optical interface of the optical analysis unit. Methods of analyzing samples are also disclosed.
Abstract:
A device for analyzing materials by plasma spectroscopy is of the portable and independent type, comprising a housing (10) containing a laser generator (18) that emits laser pulses that are focused on the surface of a material to be analyzed by means of a parabolic mirror (32) that is movable in translation inside the housing in order to perform a series of spot measurements along a scan line on the surface of the material to be analyzed and in order to take a measurement from a calibration sample (50) mounted in the measurement endpiece (22) of the housing (10).
Abstract:
A blood tracking light includes a first light source emitting blue light, a second light source emitting red light, and a third light source emitting cyan light. The light sources combine to create a light beam that provides a distinct visual appearance to blood. The light sources may include one or more LEDs, including blue LEDs, red LEDs, and cyan LEDs. The intensity of the light sources may be varied to enhance the distinct visual appearance of the blood.
Abstract:
The invention relates to a multivariate calibration which can be used when the optical system used for that method does not comprise a multi-channel detector such as a CCD sensor or a line array of photodiodes. An optical system without a multi-channel detector doesn't allow to carry out preprocessing steps. Thus there is the need to carry out these preprocessing steps in another way. It is suggested to partially replace the preprocessing step by a measurement of the optical signal, whereby the measurement comprises transmitting or reflecting the optical signal by an optical element, thereby weighing the optical signal by a spectral weighing function. The advantage of the invention is to teach how such an optical system without a bulky and expensive CCD sensor can be used to carry out a multivariate calibration and preprocessing steps.