Abstract:
An electrical interconnect forming method. The electrical interconnect includes a first substrate comprising a first electrically conductive pad, a second substrate comprising a second electrically conductive pad, and an interconnect structure electrically and mechanically connecting the first electrically conductive pad to the second electrically conductive pad. The interconnect structure comprises a non-solder metallic core structure, a first solder structure, and a second solder structure. The first solder structure electrically and mechanically connects a first portion of the non-solder metallic core structure to the first electrically conductive pad. The second solder structure electrically and mechanically connects a second portion of the non-solder metallic core structure to the second electrically conductive pad.
Abstract:
A circuit board including: an insulator having a trench; a first circuit pattern formed to bury a portion of the trench; and a second circuit pattern formed on a surface of the insulator having the trench formed therein.
Abstract:
The present invention discloses a method for assembling a camera module. The method includes putting plural conductive bumps on a conductive contact of a substrate such that a large conductive bump is formed, and pressing the substrate and an image chip together such that the conductive contact contacts with a pad formed on the image chip through the large conductive bump to combine the conductive contact and the pad. Since there is no contact between the substrate and the image chip but the large conductive bump, the method decreases the probability for fracture between the substrate and the image chip and improves the quality of the camera module.
Abstract:
A protruding electrodes is formed on a lead electrode of an electronic component, and the protruding electrodes comprises a first conductor formed on the lead electrode of the electronic component, and a second conductor overlaid on the first conductor by using a transfer mold having a concavity. By virtue of this structure, protruding electrodes of any configuration can be formed in fine pitches.
Abstract:
A semiconductor module includes a multilayer substrate. The multilayer substrate includes a first metal layer and a first ceramic layer over the first metal layer. An edge of the first ceramic layer extends beyond an edge of the first metal layer. The multilayer substrate includes a second metal layer over the first ceramic layer and a second ceramic layer over the second metal layer. An edge of the second ceramic layer extends beyond an edge of the second metal layer. The multilayer substrate includes a third metal layer over the second ceramic layer.
Abstract:
A liquid crystal display device (100) includes a glass substrate (110) having an LSI chip (130) and an FPC board (140) mounted thereon. A component ACF (150a) made of a single sheet is used to further mount discrete electronic components such as stabilizing capacitors (150) on the glass substrate (110). The component ACF (150a) has a size that covers not only a region where the discrete electronic components are to be mounted, but also the top surfaces of the LSI chip (130) and the FPC board (140) which are mounted first. By thus using the large component ACF (150a), a positional constraint upon adhering the component ACF (150a) to the glass substrate (110) is eliminated, reducing the area of a region where the discrete electronic components are mounted. By this, a board module miniaturized by reducing the area of a region where discrete electronic components are mounted is provided.
Abstract:
An adhesive for bonding and securing a semiconductor chip to a circuit board and electrically connecting the electrodes of the two, and containing an adhesive resin composition and an inorganic filler being contained in an amount of 10 to 200 parts by weight of 100 parts by weight of the adhesive resin composition.
Abstract:
To reduce connection defects between a circuit substrate provided on a core substrate and a circuit to be mounted thereon, thereby improving reliability as a multilayered device mounting substrate. The device mounting substrate includes: a first circuit substrate composed of a substrate, an insulating layer formed on this substrate, and a first conductive layer (including conductive parts) formed on this insulating layer; and a second circuit substrate mounted on the first circuit substrate, being composed of a base, a second conductive layer (including conductive parts) formed on the bottom of the base, and a third conductive layer (including conductive parts) formed on the top of the base. Here, the first and second circuit substrates are bonded by pressure so that the first and second conductive parts are laminated and embedded together into the insulating layer. The first and second conductive parts form connecting areas in the insulating layer, thereby connecting the first and second circuit substrates electrically.
Abstract:
To reduce connection defects between a circuit substrate provided on a core substrate and a circuit to be mounted thereon, thereby improving reliability as a multilayered device mounting substrate. The device mounting substrate includes: a first circuit substrate composed of a substrate, an insulating layer formed on this substrate, and a first conductive layer (including conductive parts) formed on this insulating layer; and a second circuit substrate mounted on the first circuit substrate, being composed of a base, a second conductive layer (including conductive parts) formed on the bottom of the base, and a third conductive layer (including conductive parts) formed on the top of the base. Here, the first and second circuit substrates are bonded by pressure so that the first and second conductive parts are laminated and embedded together into the insulating layer. The first and second conductive parts form connecting areas in the insulating layer, thereby connecting the first and second circuit substrates electrically.
Abstract:
An electrical interconnect forming method. The electrical interconnect includes a first substrate comprising a first electrically conductive pad, a second substrate comprising a second electrically conductive pad, and an interconnect structure electrically and mechanically connecting the first electrically conductive pad to the second electrically conductive pad. The interconnect structure comprises a non-solder metallic core structure, a first solder structure, and a second solder structure. The first solder structure electrically and mechanically connects a first portion of the non-solder metallic core structure to the first electrically conductive pad. The second solder structure electrically and mechanically connects a second portion of the non-solder metallic core structure to the second electrically conductive pad.