Abstract:
A fan-out package structure including a heat radiating side edge that includes a semiconductor substrate; a bond pad located on the semiconductor substrate; and a redistribution layer connected with the bond pad and located on the semiconductor substrate, wherein an end of the redistribution layer extends to a sidewall of the semiconductor substrate, and the end is coplanar with the sidewall.
Abstract:
A method for forming an electrical structure. The electrical structure comprises an interconnect structure and a substrate. The substrate comprises an electrically conductive pad and a plurality of wire traces electrically connected to the electrically conductive pad. The electrically conductive pad is electrically and mechanically connected to the interconnect structure. The plurality of wire traces comprises a first wire trace, a second wire trace, a third wire trace, and a fourth wire trace. The first wire trace and second wire trace are each electrically connected to a first side of the electrically conductive pad. The third wire trace is electrically connected to a second side of the electrically conductive pad. The fourth wire trace is electrically connected to a third side of said first electrically conductive pad. The plurality of wire traces are configured to distribute a current.
Abstract:
An electronic component includes: a multilayer ceramic substrate that has a penetration electrode formed therein, and has a passive element provided on the upper face thereof; an insulating film that is provided on the multilayer ceramic substrate, and has an opening above the penetration electrode; a first connecting terminal that is provided on the insulating film so as to cover the opening, and is electrically connected to the penetration electrode; and a second connecting terminal that is provided on a region of the insulating film other than the opening region.
Abstract:
A method for manufacturing an electronic device comprising a terminal provided with a conductor which penetrates a cured prepreg is provided. At least one opening is formed in the prepreg. The prepreg is attached to a substrate over which an electronic element is formed so that the conductor included in the terminal overlaps with the opening. A conductive paste is provided in a region of the prepreg where the opening is provided. Part of the conductive paste flows into the opening to be in contact with the conductor included in the terminal. Then, heat treatment is performed so that the conductive paste and the prepreg are cured. In the process for manufacturing the terminal, it is not necessary to perform a step of forming an opening with a laser beam after the prepreg is cured. Thus, an adverse effect of a laser beam on the electronic element can be eliminated.
Abstract:
A wiring board according to the present invention includes an insulating board; a first pad provided inwardly from a surface of the insulating board and electrically connected to an electrode of an electronic component; a second pad provided on the surface of the insulating board and electrically connected to a lead terminal. The first pad and the second pad include a first layer region made of copper and a second layer region arranged on the first layer region and made of nickel, and a thickness of the second layer region of the second pad is larger than a thickness of the second layer region of the first pad.
Abstract:
A wiring substrate (11) includes: a substrate; and, formed upon the substrate, a plurality of wiring lines, a plurality of circuit elements, and a plurality of connecting terminals (51) connected via the plurality of wiring lines. Each of the plurality of connecting terminals (51) includes a pair of protrusion parts (50), forming a depression part (60) between the pair of protrusion parts (50), and a depression electrode (52) that is disposed in the depression part (60) and that at least partially covers each protrusion of the pair of protrusion parts (50).
Abstract:
A substrate structure is provided. The substrate structure includes a substrate, a first insulation layer, a conductive part, a second insulation layer, a seed layer and a conductive layer. The substrate has a first circuit pattern layer and a second circuit pattern layer, which are located on two opposite surfaces of the substrate respectively. The first insulation layer formed on the first circuit pattern layer has a first insulation hole, which exposes a first opening in the outer surface of the first insulation layer. The conductive part formed on the first insulation hole for electrically connecting with a chip is enclosed by the edge of the first opening. The second insulation layer formed on the second circuit pattern layer has a second insulation hole in which the seed layer is formed. The conductive layer is formed on the seed layer for electrically connecting with a circuit board.
Abstract:
A substrate for a semiconductor package includes a ball land disposed on one surface of an insulating layer. A solder resist is applied to the surface of insulating layer while leaving the ball land exposed. A coating film is applied on the exposed surface of the ball land. The coating film includes a high molecular compound having metal particles. In the substrate having the ball land with the coating film formed thereon, it is not necessary to subject the substrate to a UBM formation process.
Abstract:
A circuit substrate having a base layer, a patterned conductive layer, a dielectric layer and a conductive block is provided. The patterned conductive layer is disposed on the base layer and having an inner pad. The dielectric layer is disposed on the base layer and covering the patterned conductive layer. The conductive block penetrates the dielectric layer, the conductive block being substantially coplanar with the dielectric layer and connecting the inner pad.
Abstract:
A method for manufacturing a printed wiring board including preparing a carrier, forming a metal layer on the carrier, forming an etching resist on the metal layer, forming a metal film from the metal layer underneath the resist by removing portion of the metal layer exposed through the resist and part of the metal layer contiguous to the portion of the metal layer and underneath the resist, forming a coating layer on side surface of the film and the carrier, forming a pad on the coating layer, removing the resist, forming a resin insulation layer on the film and surface of the pad, forming an opening reaching the surface of the pad in the insulation layer, forming a conductive circuit on the insulation layer, forming a via conductor connecting the circuit and the pad in the opening, removing the carrier from the film and coating layer, and removing the film.