Abstract:
Purging of a light beam path in an effective manner that minimizes the affect of the purging requirement on system throughput. In one embodiment, the invention is incorporated into a birefringence measurement system that has several components for directing light through a sample optical element and thereafter detecting and analyzing the light. The segment of the beam path through the sample is isolated to reduce the volume that requires continual purging.
Abstract:
This portable light source apparatus accommodates a deuterium lamp in a lamp box and, at the same time, in a housing in order for the influence of temperature changes in the outside air to become very small. Namely, the deuterium lamp, which is susceptible to changes in temperature, is enveloped not only by the lamp box but also by the housing, thereby being accommodated in a double shield structure. As a result, the temperature change of the housing, which is the most likely to be affected by the outside air, is harder to be transmitted to the deuterium lamp, whereby the latter can be utilized without taking account of the changes in weather during outdoor operations or influences of air conditioners and the like during indoor operations. Further, the deuterium lamp can be inserted into and removed from the lamp box from thereabove, so that operations of replacing the lamp become easier even when the housing is made compact, whereby the light source apparatus can be carried easier outdoors and in the field.
Abstract:
An occupancy sensor having a primary infrared radiation sensor and a secondary infrared radiation sensor in an integrated vacuum package having a window that provides separate fields of view to the sensors, respectively. The primary sensor is for monitoring occupancy of a selected space. The secondary sensor is for monitoring the background radiation of the space. Signals from the primary and secondary sensors are electronically processed and compared, and the occupancy level of the selected space is determined. Temperature and visible light sensors may also be incorporated. Sensor information is used to control temperature, ventilation, lighting and other parameters of the selected space.
Abstract:
A low-cost, reference grade pyranometer responsive to radiation in a band such as ultraviolet-B embodies unexpected and efficient construction. Large arrays or other multisensor systems are consequently available to a greater range of users. A dome constructed of UV-transmissive material has mounted therein a UV-pass "black glass" filter which transmits UV-B to a phosphor layer. The phosphor absorbs UV-B and re-emits it as predominantly green visible light. A green filter, which is "solar blind," i.e. non-transmissive to reds in the solar spectrum, transmits light to a solid state photodiode. The solid state photodiode has peak sensitivity in the green portion of the spectrum and rejects substantially all red leakage. Critical parameters such as the density and thickness of the phosphor and temperature compensation of the pyranometer combine to provide for a simplified pyranometer having great precision in measuring bands such as UV-B compared to the prior art.
Abstract:
Laser power is delivered at normal intensities or powers to the end of a laser guide such as an articulated arm from a laser console where the beam enters an attached attenuating unit. Inside the attenuator, the beam encounters a dual wavelength beam splitter that transmits an attenuated beam at, for example, 20 times reduction of power. The attenuated beam may be delivered to an area of medical treatment. The beam splitter is also reflective and reflects the remaining power to a power sensor where the thermal energy is absorbed and measured. The power of the attenuated beam is related to the power of the measured reflected beam. The beam splitter is coated to allow maximum transmission of a visible guide beam that always travels coaxially to the operating laser energy being attenuated. A signal from the power sensor is provided to a preferably battery powered read-out device that provides the surgeon with real time accurate readings of delivered power.
Abstract:
A single photon number resolving detector provides photon number resolution. The detector includes a waveguide which receives photons for detection. Nanowires are located in proximity to the waveguide. Each of the nanowires is connected in series with an electrically resistive component to provide a branch. Plural branches are electrically connected in parallel with one another. A power source is connectable to deliver an electrical current to flow through the branches. A current monitor is connected to monitor a magnitude of the total electrical current in the plurality of branches. At an operating temperature of the detector the nanowires are superconducting and each branch has an electrical time constant which is small enough to cause latching of the branch to a latched state when the nanowire of the branch absorbs a photon from the waveguide. The number of photons detected can be determined from the magnitude of the current which depends on the number of branches in the latched state.
Abstract:
An illumination device and method are provided herein for calibrating individual LEDs in the illumination device to obtain a desired luminous flux and a desired chromaticity of the device over changes in drive current, temperature, and over time as the LEDs age. The calibration method may include subjecting the illumination device to a first ambient temperature, successively applying at least three different drive currents to a first LED to produce illumination at three or more different levels of brightness, obtaining a plurality of optical measurements from the illumination produced by the first LED at each of the at least three different drive currents, obtaining a plurality of electrical measurements from the photodetector and storing results of the obtaining steps within the illumination device to calibrate the first LED at the first ambient temperature. The plurality of optical measurements may generally include luminous flux and chromaticity, the plurality of electrical measurements may generally include induced photocurrents and forward voltages, and the calibration method steps may be repeated for each LED included within the illumination device and upon subjecting the illumination device to a second ambient temperature.
Abstract:
An illumination device comprises one or more emitter modules having improved thermal and electrical characteristics. According to one embodiment, each emitter module comprises a plurality of light emitting diodes (LEDs) configured for producing illumination for the illumination device, one or more photodetectors configured for detecting the illumination produced by the plurality of LEDs, a substrate upon which the plurality of LEDs and the one or more photodetectors are mounted, wherein the substrate is configured to provide a relatively high thermal impedance in the lateral direction, and a relatively low thermal impedance in the vertical direction, and a primary optics structure coupled to the substrate for encapsulating the plurality of LEDs and the one or more photodetectors within the primary optics structure.
Abstract:
A method for profiling a laser beam includes receiving the laser beam at a thermochromic interface of a detector. A temperature set point for the detector can be selected. The temperature set point can correspond to an equilibrium temperature at the thermochromic interface. The method can also include capturing an image of the thermochromic interface and using the image to determine a partial intensity profile corresponding to at least a portion of the beam intensity profile. A reconstructed beam profile can be assembled using the partial intensity profile. If the reconstructed beam profile is not complete, the method can include iterating over additional temperature set points to determine additional partial intensity profiles. The method can also include determining that the reconstructed beam profile is complete and outputting the reconstructed beam profile.
Abstract:
A device including a plurality of epitaxial chips is disclosed. An epitaxial chip can have one or more of a light source and a detector, where the detector can be configured to measure the optical properties of the light emitted by a light source. In some examples, one or more epitaxial chips can have one or more optical properties that differ from other epitaxial chips. The epitaxial chips can be dependently operable. For example, the detector located on one epitaxial chip can be configured for measuring the optical properties of light emitted by a light source located on another epitaxial chip by way of one or more optical signals. The collection of epitaxial chips can also allow detection of a plurality of laser outputs, where two or more epitaxial chips can have different material and/or optical properties.