Abstract:
A method for measuring a spectrum of an optical sensor, advantageously in the infrared region, in which a light beam impinges on an optical sensor in contact with a medium to be measured, wherein the optical sensor transmits a measurement beam changed by the medium to be measured and the measurement beam is fed to a pyrodetector, which issues output signals corresponding to the spectrum. The intensity of the measurement signal is modulated before impinging on a pyrodetector. In order to provide a cost effective, vibration free measuring apparatus, which has a long lifetime, intensity modulation of measurement beam occurs by tuning-in wavelengths contained in the optical spectrum of measuring beam.
Abstract:
The present invention relates to a 3-color multiplex CARS spectrometer. In the 3-color multiplex CARS spectrometer, Raman resonance is achieved for multiple molecular vibrations of a sample by the combination of a short-wavelength pump beam generated by a broadband laser light source and a long-wavelength Stokes beam generated by a stable laser light source, and another short-wavelength laser beam having a narrow linewidth is then introduced separately to serve as a probe beam that interacts with the laser-driven sample, thereby generating CARS spectral signals whose wavelength components can be resolved. Accordingly, the 3-color multiplex CARS spectrometer solves problem of the conventional 2-color multiplex CARS spectroscopy in which the wavelength decomposition of CARS signals, necessary for high spectral resolution, is not possible with broadband pump light causing the CARS spectrum distortion.
Abstract:
A Raman spectroscopy system has a filter arrangement comprising two filters (16, 26A) in series, to reject light of the illuminating wavenumber from the scattered light of interest. The filters are tilted and have different characteristics for light of first and second different polarisation states. To counter this, the filters are arranged so that their respective effects on the respective polarisation states at least partially cancel each other out. This may for example be done by arranging their tilt axes (32, 34) orthogonally to each other.
Abstract:
A method for detecting trace evidence materials on a surface comprises irradiating the surface with radiation from two or more lasers emitting radiation at different wavelengths selected to stimulate luminescence in the trace materials. The evidence is detected by observing the surface through an optical filter arranged to transmit the luminescence, while blocking transmission of the laser radiation wavelengths reflected or scattered from the surface.
Abstract:
In a confocal laser scanning microscope with an illuminating configuration (2), which provides an illuminating beam for illuminating a specimen region (23), with a scanning configuration (3, 4), which guides the illuminating beam over the specimen while scanning, and with a detector configuration (5), which via the scanning configuration (3, 4) images the illuminated specimen region (23) by means of a confocal aperture (26) on to at least one detector unit (28), it is provided that the illuminating configuration (2) of the scanning configuration (3, 4) provides a line-shaped illuminating beam, that the scanning configuration (3, 4) guides the line-shaped illuminating beam over the specimen f while scanning and that the confocal aperture is designed as a slit aperture (26) or as a slit-shaped region (28, 48) of the detector unit (28) acting as a confocal aperture.
Abstract:
A fiberscope device is disclosed which is suitable for video imaging, laser Raman spectroscopy and laser Raman spectroscopic (i.e. chemical) imaging. The fiberscope design minimizes fiber background interference arising from the laser delivery fiber optic and the coherent fiber optic light gathering bundle while maintaining high light throughput efficiency through the use of integrated spectral filters. In the fiberscope design, the laser delivery fiber optic is offset from the coherent fiber optic light gathering bundle. The laser delivery field is captured entirely by the light gathering field of view of the coherent fiber bundle. The fiberscope incorporates spectral filter optical elements that provide environmental insensitivity, particularly to temperature and moisture. The fiberscope is suited to the analysis of a wide range of condensed phase materials (solids and liquids), including the analysis of biological materials such as breast tissue lesions and arterial plaques, in such a manner to delineate abnormal from normal tissues.
Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of teeth are disclosed. Perimeter receiver fiber optics preferably are spaced apart from a source fiber optic and receive light from the surface of the object/tooth being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object/tooth being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing dental prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a patient data base. Such methods and implements may be desirably utilized for purposes of detecting and preventing counterfeiting or the like.
Abstract:
An optical arrangement and method of filtering include a beam splitter that accepts an incident beam and transmits light from the incident beam of a first polarization and reflects light from the incident beam of a second polarization. The transmitted light is a first beam and the reflected light is a second beam. A first spectral filter, receives the first beam, reflects a first spectral band of the first beam, and transmits the remainder of the first beam. A second spectral filter receives the remainder of the first beam and reflects a second spectral band of the first beam. The first and second spectral filters can also receive the second beam and reflect similar first and second spectral bands. The spectral bands are then returned to the beam splitter, where they may be directed toward a dispersal element or an array of photodetectors.
Abstract:
A fiberscope device is disclosed which is suitable for video imaging, laser Raman spectroscopy and laser Raman spectroscopic (i.e. chemical) imaging. The fiberscope design minimizes fiber background interference arising from the laser delivery fiber optic and the coherent fiber optic light gathering bundle while maintaining high light throughput efficiency through the use of integrated spectral filters. In the fiberscope design, the laser delivery fiber optic is offset from the coherent fiber optic light gathering bundle. The laser delivery field is captured entirely by the light gathering field of view of the coherent fiber bundle. The fiberscope incorporates spectral filter optical elements that provide environmental insensitivity, particularly to temperature and moisture. The fiberscope is suited to the analysis of a wide range of condensed phase materials (solids and liquids), including the analysis of biological materials such as breast tissue lesions and arterial plaques, in such a manner to delineate abnormal from normal tissues.
Abstract:
Methods and systems for analysis of the polymerization material of solution polymerization processes are provided. In certain embodiments, the methods and systems subject the polymerization material to Raman spectroscopy analysis. The Raman spectroscopy provides analysis of reaction mixtures and/or product streams in solution polymerization processes. The Raman spectroscopy analysis may include both compositional and characterization analysis of the reaction mixtures and product streams. The spectroscopy results can be used to provide process control feedback to adjust operating parameters of the reactor operations and/or an associated polymerization product handling and finishing processes