Abstract:
A system for analyzing a semiconductor device, including: a first ion beam apparatus including: a sample stage to mount a sample substrate; a vacuum chamber in which the sample stage is placed; an ion beam irradiating optical system to irradiate the sample substrate; a specimen holder that accommodates a plurality of specimens separated from the sample substrate by the irradiation of the ion beam; and a probe to extract the separated specimen from the sample substrate, and to transfer the separated specimen to the specimen holder; a second ion beam apparatus that carries out a finishing process to the specimen; and an analyzer to analyze the finished specimen, wherein the first ion beam apparatus separates the specimen and the probe in a vacuum condition.
Abstract:
A compact electron microscope uses a removable sample holder having walls that form a part of the vacuum region in which the sample resides. By using the removable sample holder to contain the vacuum, the volume of air requiring evacuation before imaging is greatly reduced and the microscope can be evacuated rapidly. In a preferred embodiment, a sliding vacuum seal allows the sample holder to be positioned under the electron column, and the sample holder is first passed under a vacuum buffer to remove air in the sample holder.
Abstract:
A timing control circuit controls the timing for applying a voltage to a sub deflector when changing a position to be irradiated with the charged-particle beam. A control computer compares a target line width and a line width of a pattern written with the timing for applying voltage to the sub deflector changed, and determines appropriate timing for applying voltage to the sub deflector from a timing range corresponding to a predetermined allowable range of the difference between the target line width and the line width of the written pattern. The control computer then controls the timing control circuit based on the determined timing.
Abstract:
An electron beam apparatus with an aberration corrector using multipole lenses is provided. The electron beam apparatus has a scan mode for enabling the operation of the aberration corrector and a scan mode for disabling the operation of the aberration corrector and the operation of each of the aberration corrector, a condenser lens, and the like is controlled such that the object point of an objective lens does not change in either of the scan modes. If a comparison is made between the secondary electron images of a specimen in the two modes, the image scaling factor and the focus remain unchanged and evaluation and adjustment can be performed by distinctly recognizing only the effect of the aberration corrector. This reduces the time required to adjust an optical axis which has been long due to an axial alignment defect inherent in the aberration corrector and an axial alignment defect in a part other than the aberration corrector which are indistinguishably intermingled with each other.
Abstract:
A method and an apparatus are for three-dimensional tomographic image generation in a scanning electron microscope system. At least two longitudinal marks are provided on the top surface of the sample which include an angle therebetween. In consecutive image recordings, the positions of these marks are determined and are used to quantify the slice thickness removed between consecutive image recordings.
Abstract:
A system and method are provided for implanting ions into a workpiece in a plurality of operating ranges. A desired dosage of ions is provided, and a spot ion beam is formed from an ion source and mass analyzed by a mass analyzer. Ions are implanted into the workpiece in one of a first mode and a second mode based on the desired dosage of ions, where in the first mode, the ion beam is scanned by a beam scanning system positioned downstream of the mass analyzer and parallelized by a parallelizer positioned downstream of the beam scanning system. In the first mode, the workpiece is scanned through the scanned ion beam in at least one dimension by a workpiece scanning system. In the second mode, the ion beam is passed through the beam scanning system and parallelizer un-scanned, and the workpiece is two-dimensionally scanned through the spot ion beam.
Abstract:
A system and method for mitigating contamination in an ion implantation system is provided. The system comprises an ion source, a power supply operable to supply power to a filament and mirror electrode of the ion source, a workpiece handling system, and a controller, wherein the ion source is selectively tunable via the controller to provide rapid control of a formation of an ion beam. The controller is operable to selectively rapidly control power to the ion source, therein modulating a power of the ion beam between an implantation power and a minimal power in less than approximately 20 microseconds based, at least in part, to a signal associated with a workpiece position. Control of the ion source therefore mitigates particle contamination in the ion implantation system by minimizing an amount of time at which the ion beam is at the implantation current.
Abstract:
Techniques for reducing effects of photoresist outgassing are disclosed. In one particular exemplary embodiment, the techniques may be realized as an apparatus for reducing effects of photoresist outgassing in an ion implanter. The apparatus may comprise a drift tube located between an end-station and an upstream beamline component. The apparatus may also comprise a first variable aperture between the drift tube and the end-station. The apparatus may further comprise a second variable aperture between the drift tube and the upstream beamline component. The first variable aperture and the second variable aperture can be adjusted to facilitate differential pumping.
Abstract:
An electron beam apparatus with an aberration corrector using multipole lenses is provided. The electron beam apparatus has a scan mode for enabling the operation of the aberration corrector and a scan mode for disabling the operation of the aberration corrector and the operation of each of the aberration corrector, a condenser lens, and the like is controlled such that the object point of an objective lens does not change in either of the scan modes. If a comparison is made between the secondary electron images of a specimen in the two modes, the image scaling factor and the focus remain unchanged and evaluation and adjustment can be performed by distinctly recognizing only the effect of the aberration corrector. This reduces the time required to adjust an optical axis which has been long due to an axial alignment defect inherent in the aberration corrector and an axial alignment defect in a part other than the aberration corrector which are indistinguishably intermingled with each other.
Abstract:
A charged particle beam instrument is offered which comprises an irradiation mechanism for irradiating a sample with a charged particle beam (FIB/EB), a detection mechanism for detecting secondary charged particles produced by the irradiation by the charged particle beam, a storage portion for previously storing three-dimensional data about the irradiation mechanism and detection mechanism in an interrelated manner to the stage coordinate system W, a conversion portion for converting three-dimensional data about the sample into the stage coordinate system, and a decision portion for simulating the positional relationships among the sample, irradiation mechanism, and detection mechanism based on data converted by the conversion portion and on data stored in the storage portion when a certain position on the sample is placed into a measurement point and for previously making a decision as to whether the sample will interfere and making a report of the result of the decision.