Abstract:
An electronic device is disclosed herein. In accordance with certain implementations, the electronic device includes a printed circuit board having electrically conductive traces formed thereon. The electronic device also includes a thermochromic solder mask layer overlying the electrically conductive traces. The thermochromic solder mask layer changes color in response to temperature changes associated with operation of the electronic device. The thermochromic characteristics of the solder mask layer are useful for purposes of indicating overheating of the electronic device, the conductive traces, or a region of the printed circuit board.
Abstract:
A conductive pattern is prepared in a polymeric layer that has (a) a reactive polymer comprising pendant tertiary alkyl ester groups, (b) a compound that provides an acid upon exposure to radiation having a λmax of at least 150 nm and up to and including 450 nm, and (c) a crosslinking agent. The polymeric layer is patternwise exposed to provide a polymeric layer comprising non-exposed regions and exposed regions comprising a polymer comprising carboxylic acid groups. The exposed regions are contacted with electroless seed metal ions to form a pattern of electroless seed metal ions. The pattern of electroless seed metal ions is then reduced to provide a pattern of corresponding electroless seed metal nuclei. The corresponding electroless seed metal nuclei are then electrolessly plated with a conductive metal.
Abstract:
A circuit board includes an electrically conductive sheet having an insulative coating surrounding the conductive sheet, with a surface of the insulative coating around an edge of the conductive sheet having an arcuate or rounded shape. At least one electrical conductor is conformally deposited on at least the rounded insulative coating around the edge of the conductive sheet and defined via photolithographic and metallization techniques. Each electrical conductor on the insulative coating thereon around the edge of the conductive sheet conforms to the arcuate or rounded shape of the insulative coating and, therefore, has an arcuate or rounded shape.
Abstract:
The present invention provides a glass fiber product having particles adhered to at least one fiber of the product, where the size and amount of particles is effective to reduce the tackiness of the glass fiber product and optionally effective to reduce interfilament bonding, and composition, and method for forming the same.
Abstract:
An exemplary method of making an FPC includes forming a substrate comprising metal foil layers interleaved with intervening layers by: (a) laminating intervening layers with metal foil layers; (b) adhering a covering film to outermost surfaces of the substrate; (c) defining a hole in one side of the substrate through the covering film and at least two metal foil layers and the intervening layer between the at least two metal foil layers by etching or laser technology; and (d) plating a portion of an inner wall of the hole with conductive material to form a via to electrically connect the at least two metal foil layers.
Abstract:
Mobile ion diffusion causes a shift in the threshold voltage of non-volatile storage elements in a memory chip, such as during an assembly process of the memory chip. To reduce or avoid such shifts, a coating can be applied to a printed circuit board substrate or a leader frame to which the memory chip is surface mounted. An acrylic resin coating having a thickness of about 10 μm may be used. A memory chip is attached to the coating using an adhesive film. Stacked chips may be used as well. Another approach provides metal barrier traces over copper traces of the printed circuit board, within a solder mask layer. The metal barrier traces are fabricated in the same pattern as the copper traces but are wider so that they at least partially envelop and surround the copper traces. Corresponding apparatuses and fabrication processes are provided.
Abstract:
A passive electrical article includes a first electrically conductive substrate having a major surface and a second electrically conductive substrate having a major surface. The major surface of the second substrate faces the major surface of the first substrate. An electrically resistive layer is on at least one of the major surface of the first substrate and the major surface of the second substrate. An electrically insulative layer is between the first and second substrates and in contact with the electrically resistive layer. The insulative layer is a polymer having a thickness ranging from about 1 μm to about 20 μm. The insulative layer has a substantially constant thickness.
Abstract:
Provided is a circuit device manufacturing method for coating a bottom surface of a circuit board with a thin coating of sealing resin. In the present invention, a circuit board having a circuit element such as a semiconductor element embedded therein is placed in a molding die, and a resin sheet containing a thermosetting resin is interposed between the circuit board and a bottom surface of an inner wall of the molding die. Under this condition, the molding die is heated to about 180° C., and a sealing resin in liquid form is injected through a gate. Thereby, the bottom surface of the circuit board can be coated with a thin coating of the sealing resin made of the molten resin sheet.
Abstract:
Methods of coupling a surface mount device with a substrate such as a printed circuit, for example, are disclosed. A method, according to one aspect, may include coupling a holder with a substrate such that terminals of the substrate are included in an opening of the holder, mounting an electronic device over the terminals with a conductive bonding material disposed there between, heating the conductive bonding material to its melting point, and cooling the conductive bonding material.
Abstract:
Disclosed is a method of forming a metal pattern, the method comprising depositing a dielectric substrate on a supporting substrate; forming a latent mask pattern of a metal pattern on the dielectric substrate; etching the dielectric substrate exposed by the latent mask pattern; forming a seed layer on the supporting substrate by activating the supporting substrate; removing the latent mask pattern and the portion of the seed layer disposed on the latent mask pattern through a lift-off process; and plating a metal layer on the patterned seed layer.