Abstract:
The present invention provides a connection board that is formed by an insulating resin composition layer made of one layer or two or more layers and a connection conductor that is formed so as to pass through the insulating resin composition layer in its thickness direction at a position where a conductor circuit is connected, and a multi-layer wiring board, a substrate for semiconductor package and a semiconductor package using the connection board, and methods for manufacturing them.
Abstract:
A multilayer printed wiring board having a wiring lead-out port has a signal circuit conductor perfectly covered by an earth circuit in its inside and a wiring lead-out port. A signal circuit conductor having a branch pattern is preferable. A large number of products can be easily manufactured with good size reproducibility. The multilayer printed wiring board is manufactured by selectively etching the copper of a cladding sheet manufactured by bonding a copper foil to a nickel foil with 0.1-3% reduction and forming a signal circuit conductor covered by an earth circuit and the wiring lead-out port.
Abstract:
A method for forming connections within a multi-layer electronic circuit board 10 which allows for the selective, efficient, and reliable interconnection between at least one conductive layer and a ground plane or layer.
Abstract:
An adhesive-free multilayered metal laminate having a given thickness which is obtained by bonding a metal sheet having a thin metal film on a surface thereof to a metal foil without using an adhesive; and a process for continuously producing the laminate. The process comprises the steps of; setting a metal sheet on a reel for metal sheet unwinding; setting a metal foil on a reel for metal foil unwinding; unwinding the metal sheet from the metal sheet-unwinding reel and activating a surface of the metal sheet to thereby form a first thin metal film on the metal sheet surface; unwinding the metal foil from the metal foil-unwinding reel and activating a surface of the metal foil to thereby form a second thin metal film on the metal foil surface; and press-bonding the activated surface of the first thin metal film to that of the second thin metal film so that the first thin metal film formed on the metal sheet is in contact with the second thin metal film formed on the metal foil.
Abstract:
A wiring board according to the present invention includes a wiring part formed of one or more layers, a first terminal area disposed on one side of the wiring part in a projecting manner, and a second terminal area disposed on the other side of the wiring part. A resist having an opening for a first terminal area is formed on a surface of a composite made of a plurality of metal layers. A part of a first metal layer of the composite is etched through the opening for a first terminal area to form a hole. The hole is subjected to an electroless plating through the opening of the resist. Thus, the hole is filled with an electroplated layer to form a first terminal area. Then, the resist is removed from the composite, and a wiring layer is formed thereon. Subsequently, a solder resist having an opening for a second terminal area is disposed on the wiring layer. The opening of a second terminal area of the solder resist is subjected to an electroplating so as to form a second terminal area. Removing remaining parts of the composite, a wiring board is completed.
Abstract:
The semiconductor device (10) comprises a carrier (30) and a semiconductor element (20), such as an integrated circuit. The carrier (30) is provided with apertures (15), thereby defining connecting conductors (31-33) having side faces (3). Notches (16) are present in the side faces (3). The semiconductor element (20) is enclosed in an encapsulation (40) that extends into the notches (16) in the carrier (30). As a result, the encapsulation (40) is mechanically anchored in the carrier (30). The semiconductor device (10) can be made in a process wherein, after the encapsulating step, no lithographic steps are necessary.
Abstract:
The present invention discloses a method of producing a copper foil used for a printed circuit board (PCB). In this method of producing a copper foil for a solder bump, metal surfaces are activated by plasma or primer treatment and finally are clad using a pressing means in a process of cladding a copper foil constituting a bump and a copper foil forming a circuit. Therefore, it is possible to produce a copper foil for a PCB with excellent adhesion strength without carrying out any bump forming process.
Abstract:
A multi-layer electronic circuit board design 10 having selectively formed apertures or cavities 26 which have improved solder-wetting characteristics.
Abstract:
A method 10 for making a multi-layer electronic circuit board 98 having at least one electrically conductive protuberance 15 which forms a “via” and which traverses through the various layers of the electric circuit board 98, and further having at least one interconnection portion 102 which supports a wide variety of components and interconnection assemblies.
Abstract:
A method for forming connections within a multi-layer electronic circuit board 10. The method includes forming an aperture within the circuit board and selectively coating the interior surface of the aperture with a polar solder mask material that is effective to bond with solder that is selectively inserted into the aperture, thereby retaining the solder within the aperture and improving the electrical connection provided by the solder.