Abstract:
An electron-beam induced plasmas is utilized to establish a non-mechanical, electrical contact to a device of interest. This plasma source may be referred to as atmospheric plasma source and may be configured to provide a plasma column of very fine diameter and controllable characteristics. The plasma column traverses the atmospheric space between the plasma source into the atmosphere and the device of interest and acts as an electrical path to the device of interest in such a way that a characteristic electrical signal can be collected from the device. Additionally, by controlling the gases flowing into the plasma column the probe may be used for surface modification, etching and deposition.
Abstract:
A system for inspection of electrical circuits, which electrical circuits include a multiplicity of conductors which are mutually spaced from each other, the system including a voltage driver operative to apply different electrical voltages to a plurality of conductors from among the multiplicity of conductors, which plurality of conductors are in spatial propinquity to each other, a sensor operative to sense at least one characteristic of a test region defined thereby with respect to the electrical circuits, the sensor lacking sufficient spatial resolution to distinguish between the locations of individual ones of the plurality of conductors and a defect indicator responsive to at least one output of the sensor for ascertaining whether a defect exists in the plurality of conductors.
Abstract:
A non-mechanical contact signal measurement apparatus includes a first conductor on a structure under test and a gas in contact with the first conductor. At least one electron beam is directed into the gas so as to induce a plasma in the gas where the electron beam passes through the gas. A second conductor is in electrical contact with the plasma. A signal source is coupled to an electrical measurement device through the first conductor, the plasma, and the second conductor when the plasma is directed on the first conductor. The electrical measurement device is responsive to the signal source.
Abstract:
A method of testing a flat panel display including an array of pixels and a peripheral circuit configured to provide signals to the pixels is disclosed. The method includes applying at least one test signal to the peripheral circuit, acquiring one or more voltage images of the peripheral circuit, and detecting a defect in the peripheral circuit based on the acquired voltage images.
Abstract:
In an inspection system for planar objects having periodic structures, programmable optical Fourier filtering in the focal plane of a telecentric lens system is used to directly identify physical phenomena indicative of non-periodic defects. Lens assemblies and a coherent optical source are used to generate and observe a spatial Fourier transform of a periodic structure in the Fourier plane. Optical Fourier filtering (OFF) is performed in the focal plane using an electrically programmable and electrically alignable spatial light modulator. The spatial light modulator with high signal to noise ratio is electrically reconfigurable according to a feedback-driven, filter construction and alignment algorithm. The OFF enhances any non-periodic components present in the Fourier plane and final image plane of the object. A system having a plurality of inspection channels provides high-throughput inspection of objects with small non-periodic defects while maintaining high detection sensitivity.
Abstract:
A system for glass substrate inspection, such as flat patterned media, includes an air table that holds the glass substrate. The air table includes chucks that emit gas as air bearings. A camera is disposed over the air table and moves in a direction across a width of a top surface of the glass substrate. An assembly includes a gripper and a probe bar configured to be transported under the camera. The gripper is configured to grip a bottom surface of the glass substrate opposite the top surface. The probe bar delivers driving signals to the glass substrate through a plurality of probe pins.
Abstract:
A probe system for facilitating inspection of a device under test comprising a plurality of panels, the probe system incorporating: a configurable universal probe bar comprising a plurality of probe blocks, the plurality of probe blocks comprising a plurality of probe pins positioned to simultaneously electrically engage a plurality of cell contact pads of the plurality of panels of the device under test to deliver a plurality of electrical test signals; and an alignment system configured to achieve an alignment of the plurality of probe pins with the plurality of the cell contact pads of the plurality of panels of the device under test.
Abstract:
Described are techniques for maintaining reliable and reproducible conditions for panel inspection, i.e. pixel and line defect detection, while at the same time preventing large-scale panel damage. One implementation involves an apparatus for identifying a defect in an electronic circuit incorporating a circuit driving module configured to apply an electrical test signal to the electronic circuit; a defect detection module configured to identify the defect in the electronic circuit based at least on the applied electrical test signal; a signal monitoring module configured to measure the electrical test signal at the electronic circuit; and a control module operatively coupled to the signal monitoring module and the circuit driving module and configured to control at least the circuit driving module based on the electrical test signal measured at the electronic circuit.
Abstract:
A method for inspecting an object and detecting defects is taught (BGA and Flip-Chip solder joints on a PCB particularly). The method comprises injecting a thermal stimulation on the object; capturing a sequence of consecutive infrared images of the object to record heat diffusion resulting from the heat pulse; comparing the heat diffusion on said object to a reference; and determining whether the object comprises any defects. Also described is a system comprising a mounting for mounting the object; a thermal stimulation module for applying a thermal stimulation to the bottom surface of the object; an infrared camera for capturing infrared images of the object on the top surface of the object to record a change in infrared radiation from the top surface resulting from the thermal stimulation; and a computer for comparing the change in infrared radiation within a region on the top surface to a reference and determining whether the object comprises any defects.
Abstract:
An electron-beam induced plasma is utilized to establish a non-mechanical, electrical contact to a device of interest. This plasma source may be referred to as atmospheric plasma source and may be configured to provide a plasma column of very fine diameter and controllable characteristics. The plasma column traverses the atmospheric space between the plasma source into the atmosphere and the device of interest and acts as an electrical path to the device of interest in such a way that a characteristic electrical signal can be collected from the device. Additionally, by controlling the gases flowing into the plasma column the probe may be used for surface modification, etching and deposition.