Abstract:
The invention relates to a lubricant coating (5) for a medical injection device (1), comprising successively: —a bottom layer (50) in contact with the medical device surface (21) of the container to be lubricated, comprising a mixture of cross-linked and non-cross-linked poly-(dimethylsiloxane), —an intermediate layer (51) consisting essentially of oxidized poly-(dimethylsiloxane) and having a thickness comprised between 10 and 30 nm and, —a top layer (52) consisting essentially of non-cross-linked poly-(dimethylsiloxane) and having a thickness of at most 2 nm. The invention also relates to a medical injection device comprising such a lubricant coating, and a manufacturing process for said coating.
Abstract:
A pharmaceutical packaging comprising a silicone-free lubricating film of crosslinked organic molecules. The method for producing the pharmaceutical packaging comprises: applying a silicone-free organic fluid as a film on a surface of a hollow substrate for the lubricating film; placing the substrate in a vacuum reactor; evacuating the vacuum reactor; generating an alternating electromagnetic field by an AC voltage source; and introducing the alternating electromagnetic field into the interior of the substrate, a field strength thereof in the gas which is present in or introduced into the evacuated cavity of the substrate being sufficient to cause a homogeneous glow discharge under the pressure prevailing in the cavity of the substrate.
Abstract:
A method of forming a biocompatible or biologically inert article for use in an application in which the article will make contact with at least one tissue, organ, or fluid within a human or animal body is provided. The method generally comprises providing an article having an external surface; selecting chemical precursors; using a means to direct one or more chemical precursors towards or to apply such chemical precursors to the external surface; activating the chemical precursors by exposing said precursors to atmospheric pressure plasma; and grafting and/or cross-linking the chemical precursors to form a solid coating adjacent to the external surface of the article.
Abstract:
Substrates such as fabrics are treated in an apparatus that includes a chemical transfer apparatus and a transport means which conducts the substrate past the chemical transfer apparatus. The chemical transfer apparatus applies a solid chemical treatment mixture to the substrate continuously as the substrate is transported past the chemical transfer apparatus. The chemical treatment mixture includes a monomer that is cured by free radical polymerization. The applied chemical treatment mixture is then cured on the substrate by free radical polymerization. This invention provides a dry alternative to conventional wet coating methods, and avoids many of the problems associated with wet coating methods.
Abstract:
Methods are provided for surface modifying a hydrophobic polymer substrate to increase wettability comprising the steps of pre-treating the hydrophobic polymer substrate with a radio frequency (RF)-generated first plasma and a RF-generated second plasma wherein the first plasma and the second plasma are applied sequentially, coating the hydrophobic polymer substrate with a hydrophilic coating; and polymerizing the hydrophilic coating on the hydrophobic polymer substrate by exposure to a RF-generated third plasma.
Abstract:
Disclosed is a n atmospheric-pressure double-plasma graft polymerization apparatus. The apparatus includes a workbench, an initial roller of a roll-to-roll device, an atmospheric-pressure plasma activation device, a peroxide formation device, a coating and grafting device, a drying device, a graft polymerization and curing device, a curing device and a final roller of a roll-to-roll device. The devices are sequentially provided on the workbench.
Abstract:
A hybrid film, comprising a first polymer film having a plasma-treated surface and a second polymer film having first and second surfaces, with the first surface of the second polymer film being disposed along the first plasma-treated surface of the first polymer film has superior thermal and mechanical properties that improve performance in a number of applications, including food packaging, thin film metallized and foil capacitors, metal evaporated magnetic tapes, flexible electrical cables, and decorative and optically variable films. One or more metal layers may be deposited on either the plasma-treated surface of the substrate and/or the radiation-cured acrylate polymer. A ceramic layer may be deposited on the radiation-cured acrylate polymer to provide an oxygen and moisture barrier film. The hybrid film is produced using a high speed, vacuum polymer deposition process that is capable of forming thin, uniform, high temperature, cross-linked acrylate polymers on specific thermoplastic or thermoset films. Radiation curing is employed to cross-link the acrylate monomer. The hybrid film can be produced in-line with the metallization or ceramic coating process, in the same vacuum chamber and with minimal additional cost.
Abstract:
In order to provide a process for curing a coating, in particular a radiation-curable coating, on a work piece, which allows coatings even on difficult to access regions of a three-dimensional work piece to be cured in a simple manner, it is proposed that the work piece is disposed in a plasma generation area, and that in the plasma generation area a plasma is generated, by means of which the coating is at least partially cured.
Abstract:
The process for applying a thermally attached lubricating coating on an interior wall of a cylindrical medicinal container includes applying a thermally attachable lubricant to an interior wall of the container; uniformly spreading or homogenizing the applied lubricant on the wall to form a lubricating coating and thermally attaching the lubricating coating by irradiating the lubricating coating with infrared radiation selectively in a cylindrical region of the container at elevated temperatures above a maximum operating temperature of the container. The apparatus for performing the process includes an insertable spraying device for applying the thermally attachable lubricant (3) to the interior wall of the container (1) from a supply reservoir; a device for homogenizing the lubricant to form the lubricating coating (4) and a rod-shaped infrared radiation source (5) insertable into an interior space of the container. The radiation source has a radiation screen (5a, 6, 7) for keeping the radiation away from the container outlet.
Abstract:
A hybrid film, comprising a first polymer film having a plasma-treated surface and a second polymer film having first and second surfaces, with the first surface of the second polymer film being disposed along the first plasma-treated surface of the first polymer film, has superior thermal and mechanical properties that improve performance in a number of applications, including food packaging, thin film metallized and foil capacitors, metal evaporated magnetic tapes, flexible electrical cables, and decorative and optically variable films. One or more metal layers may be deposited on either the plasma-treated surface of the substrate and/or the radiation-cured acrylate polymer. A ceramic layer may be deposited on the radiation-cured acrylate polymer to provide an oxygen and moisture barrier film. The hybrid film is produced using a high speed, vacuum polymer deposition process that is capable of forming thin, uniform, high temperature, cross-linked acrylate polymers on specific thermoplastic or thermoset films. Radiation curing is employed to cross-link the acrylate monomer. The hybrid film can be produced in-line with the metallization or ceramic coating process, in the same vacuum chamber and with minimal additional cost.