Abstract:
Optimization techniques are disclosed for producing sharp and stable tips/nanotips relying on liquid Taylor cones created from electrically conductive materials with high melting points. A wire substrate of such a material with a preform end in the shape of a regular or concave cone, is first melted with a focused laser beam. Under the influence of a high positive potential, a Taylor cone in a liquid/molten state is formed at that end. The cone is then quenched upon cessation of the laser power, thus freezing the Taylor cone. The tip of the frozen Taylor cone is reheated by the laser to allow its precise localized melting and shaping. Tips thus obtained yield desirable end-forms suitable as electron field emission sources for a variety of applications. In-situ regeneration of the tip is readily accomplished. These tips can also be employed as regenerable bright ion sources using field ionization/desorption of introduced chemical species.
Abstract:
A novel high brightness point ion source (10) that is adapted to operate with liquid ionic compounds such as mixtures of molten salts, bases or acids. The ion source is basically comprised of two parts: the needle assembly (11) and the extraction assembly (12). The former consists of a point shaped needle (13) made of a refractory ceramic material, whose sharpened extremity is referred to as the tip (13a). The needle is partially lodged in a recess of an insulating support (15). A heating coil (14) made of stainless steel is tightly wound around a portion of the needle adjacent to the tip. The needle is coated with the mixture, for instance, by dipping in a crucible containing the mixture. The extraction assembly is comprised of a metal extracting electrode (20) provided with a central aperture that is screwed on a cylindrical metallic body (19), so that the spacing between the tip and the aperture center is adjustable. The needle assembly is mounted inside the cylindrical body and accurately affixed thereto by centering screws (22). The high brightness point ion source is then ready for use in a FIB column. A heating current supply (18) is connected to the coil extremities to melt the mixture if necessary. An extraction voltage supply (23) applies a potential difference between the extraction assembly and the mixture at the tip apex for ion emission.
Abstract:
A processing method and a processing apparatus realizing the method use a focused ion beam generator. The apparatus includes a plasma or liquid metal ion source producing ions not influencing electric characteristics of a sample, an ion beam generator for extracting ions from the ion source into an ion beam, an ion beam focusing device for focusing the ion beam, an irradiator for irradiating the focused ion beam onto the sample, and a sample chamber in which the sample to be irradiated for processing is installed. The focused ion beam is irradiated onto a sample such as a silicon wafer or device to conduct on a particular position of the sample a fine machining work, a fine layer accumulation, and an analysis.
Abstract:
A device for generating a source current of charge carriers by a field emission and a method stabilizing a source current of charge carriers emitted by a field emission element are disclosed. In an embodiment the device includes at least one field emission element from which the charge carriers emerge during operation, which lead to an emission current in the field emission element, at least one extraction electrode in order to extract the charge carriers from the field emission element, wherein a first part of the extracted charge carriers contributes to the source current, and a second part of the extracted charge carriers impinges on the extraction electrode and leads to an extraction current in the extraction electrode, an additional electrode on which the source current of charge carriers impinges at least in part and which contributes to an electrode current in the additional electrode.
Abstract:
An ionic liquid ion source can include a microfabricated body including a base and a tip. The body can be formed of a porous material compatible with at least one of an ionic liquid or room-temperature molten salt. The body can have a pore size gradient that decreases from the base of the body to the tip of the body, such that the at least one of an ionic liquid or room-temperature molten salt is capable of being transported through capillarity from the base to the tip.
Abstract:
In an accelerating tube which uses a conductive insulator, there is a possibility that the dopant concentration on a surface of the conductive insulator becomes non-uniform so that the surface resistance of the conductive insulator becomes non-uniform. Accordingly, a circumferential groove is formed on the inner surface of the conductive insulator accelerating tube in plural stages, and metal is metalized along inner portions of the grooves. When the resistance of a specific portion on the surface of the accelerating tube differs from the resistance of an area around the specific portion, the potential of the metalized region on the inner surface of the accelerating tube becomes a fixed value and hence, the potential distribution on the inner surface of the accelerating tube in the vertical direction can be maintained substantially equal without regard to the circumferential direction.
Abstract:
An ionic liquid ion source can include a microfabricated body including a base and a tip. The body can be formed of a porous material compatible with at least one of an ionic liquid or room-temperature molten salt. The body can have a pore size gradient that decreases from the base of the body to the tip of the body, such that the at least one of an ionic liquid or room-temperature molten salt is capable of being transported through capillarity from the base to the tip.
Abstract:
A charged particle source for a focused particle beam system such as a transmission electron microscope (TEM), scanning transmission electron microscope (STEM), scanning electron microscope (SEM), or focused ion beam (FIB) system is disclosed. The source employs a multiplicity of independently-addressable emitters within a small region which can be centered on the axis of the charged particle system. All of the emitters may be individually controlled to enable emission from one or more tips simultaneously. A mode with only one emitter activated corresponds to high brightness, while modes with multiple emitters simultaneously activated provides high angular intensities with lower brightness. Source lifetimes can be extended through sequential use of single emitters. A combined mechanical and electrical alignment procedure for all emitters is described.
Abstract:
A charged particle source for a focused particle beam system such as a transmission electron microscope (TEM), scanning transmission electron microscope (STEM), scanning electron microscope (SEM), or focused ion beam (FIB) system is disclosed. The source employs a multiplicity of independently-addressable emitters within a small region which can be centered on the axis of the charged particle system. All of the emitters may be individually controlled to enable emission from one or more tips simultaneously. A mode with only one emitter activated corresponds to high brightness, while modes with multiple emitters simultaneously activated provides high angular intensities with lower brightness. Source lifetimes can be extended through sequential use of single emitters. A combined mechanical and electrical alignment procedure for all emitters is described.
Abstract:
An ion propulsion device including emission modules in an emission plane, each module having an insulating support, an emission electrode on the support, and a conductive liquid with a microfluidic channel depositing conductive liquid on the electrode; an extraction electrode common to the emission modules and facing the modules; and a control unit, in which each module is configured to emit an ion beam when an electric field is applied to the liquid; each control unit controls an ion emission current emitted by applying a potential difference between each emission electrode and the extraction electrode; the emission electrodes are spaced apart by a linear distance that is greater than a distance between two adjacent emission electrodes separated by an empty space; and a length of the insulating support between the electrodes is greater than a propagation distance of an electric leakage current by charge jumping along the support between the electrodes.