Abstract:
A process for fabricating a suspended microelectromechanical system (MEMS) structure comprising epitaxial semiconductor functional layers that are partially or completely suspended over a substrate. A sacrificial release layer and a functional device layer are formed on a substrate. The functional device layer is etched to form windows in the functional device layer defining an outline of a suspended MEMS device to be formed from the functional device layer. The sacrificial release layer is then etched with a selective release etchant to remove the sacrificial release layer underneath the functional layer in the area defined by the windows to form the suspended MEMS structure.
Abstract:
Die vorliegende Erfindung schafft ein Herstellungsverfahren für ein mikromechanisches Bauelement und ein entsprechendes mikromechanisches Bauelement. Das Herstellungsverfahren umfasst die Schritte: Bereitstellen eines Substrats (1) mit einer in Strukturbereichen(3a-3e) freiliegenden einkristallinen Startschicht (1c), wobei die Strukturbereiche (3a-3e) eine Oberseite (O) und laterale Flanken (F) aufweisen, wobei auf der Oberseite (O) eine Katalysatorschicht (2) vorgesehen ist, welche geeignet ist, ein Siliziumwachstum der freiliegenden Oberseite (O) der strukturierten einkristallinen Startschicht (1c) zu fördern, und wobei auf den Flanken (F) keine Katalysatorschicht (2) vorgesehen ist; und Durchführen eines selektiven Aufwachsprozesses an der Oberseite (O) der einkristallinen Startschicht (1c) mittels der Katalysatorschicht (2)in einer Reaktivgasatmosphäre zum Ausbilden einer mikromechanischen Funktionsschicht (3').
Abstract:
A semiconductor structure comprises a frame (24) provided by a monocrystalline substrate comprising a first semiconductor material and having a window passing through the substrate between first and second opposite surfaces of the substrate; and a monocrystalline membrane (4) over the window provided by a layer supported directly on the first surface of the substrate, the membrane comprising a second, different semiconductor material which is under tensile strain.
Abstract:
A method for creating a semiconductor structure is provided. In accordance with the method, a semiconductor substrate (101) is provided over which is disposed a sacrificial layer (103), and which has a thin single crystal semiconductor layer (105) disposed over the sacrificial layer (103). An opening (107) is then created which extends through the semiconductor layer (105) and into the sacrificial layer (103). The semiconductor layer (105) is then epitaxially grown to a suitable device thickness, thereby resulting in a device layer. The semiconductor layer is grown such that the resulting device layer extends over the opening (107), and such that the surface of the portion of the device layer extending over the opening is single crystal silicon.
Abstract:
Disclosed is a micromechanical device, more particularly, a micromechanical cantilever sensor, comprising a semiconductor substrate (10) with a basic doping, at least one doping area (20, 22; 25; 28) applied therein differing from the basic doping; at least one epitaxial layer (30a, 30b; 33a, 33b; 36a, 36b, 37a, 37b) lying above the doping area (20, 22; 25; 28) of the substrate (10) and a hollow space (50) beneath one of the epitaxial layers (30a, 30b; 33a, 33b; 36a, 36b, 37a, 37b), wherein the area of the epitaxial layer (30b; 33a; 37a) located above the hollow space has a membrane function.
Abstract:
반도체 구조를 생성하는 방법이 제공된다. 상기 방법에 따라, 반도체 기판(101)이 제공되어 그 위에 희생층(103)이 배치되고, 얇은 단결정 반도체층(105)이 희생층(103) 위에 배치된다. 그 다음, 반도체층(105)을 통해 희생층(103)으로 연장하는 개구부(107)가 생성된다. 반도체층(105)은 적절한 장치 두께로 에피택셜 성장되고, 그에 의해 장치층이 된다. 반도체층은, 결과로서 생긴 장치층이 개구부(107)를 통해 연장하고, 개구부를 통해 연장하는 장치층의 일부 표면이 단결정 실리콘이 되도록 성장된다. 반도체 구조, 반도체층, 에피택셜 성장, 장치층, 희생층
Abstract:
A method for creating a semiconductor structure is provided. In accordance with the method, a semiconductor substrate (101) is provided over which is disposed a sacrificial layer (103), and which has a thin single crystal semiconductor layer (105) disposed over the sacrificial layer (103). An opening (107) is then created which extends through the semiconductor layer (105) and into the sacrificial layer (103). The semiconductor layer (105) is then epitaxially grown to a suitable device thickness, thereby resulting in a device layer. The semiconductor layer is grown such that the resulting device layer extends over the opening (107), and such that the surface of the portion of the device layer extending over the opening is single crystal silicon.