Abstract:
An apparatus including a substrate including a first side and an opposite second side; at least one first circuit device on the first side of the substrate, at least one second device on the second side of the substrate; and a support on the second side of the substrate, the support including interconnections connected to the at least one first and second circuit device, the support having a thickness dimension operable to define a dimension from the substrate greater than a thickness dimension of the at least one second circuit device. A method including disposing at least one first circuit component on a first side of a substrate; disposing at least one second circuit component on a second side of the substrate; and coupling a support to the substrate, the substrate defining a dimension from the substrate greater than a thickness dimension of the at least one second circuit component.
Abstract:
The invention relates to a method for manufacturing a printed circuit board (10) having a substrate (2) and an electric circuit (8), in particular for a rear view device of a motor vehicle, the method comprising the following steps: manufacturing a plurality of substrate parts (2a, 2b); and selecting at least two of the substrate parts (2a, 2b), and connecting the selected substrate parts (2a, 2b) and providing the connected substrate parts (2a, 2b) with the circuit (8).
Abstract:
Direct attach or surface mount LEDs are mounted onto a flat, thermally conductive, substrate, which is folded to form a light recycling cavity. A planar substrate is first coated with a metal layer, which is patterned to electrically connect the LEDs. The direct attach or surface mount LEDs are mounted on the substrate. The substrate is then scribed on the backside to form cut channels which form the folds. The direct attach or surface mount LEDs are then attached onto the metal layer on the substrate. The substrate is then folded into a light recycling cavity where the direct attach or surface mount LEDs are facing the inside of the cavity.
Abstract:
A reconfigurable system is described that can optimize the performance of the system. Substrates can be detached, levitated, moved, dropped and reattached as desired by the use of Coulomb forces generate between Coulomb islands. Thus, a system using a first set of substrates for a given frequency range can be exchanged with a second set of substrates operable at a different frequency range by the use of Coulomb forces. Making this exchange in an RF system can improve the selectivity and decrease the power dissipation of the system. One of the exchanges can involve inductor to shift the frequency of oscillation, for example. A control unit can be used to control the movement and replacement of all substrates. The formation of minimal energy potentials of Coulomb forces are determined to move a substrate over an underlying substrate.
Abstract:
Printed circuit boards and breadboard devices have contact pads and magnetic component connectors where connection between the contact pads and the magnetic component connectors are made by magnetic force. Either the contact pad or the magnetic component connector will be magnetic and the other will be made of a material to which a magnet will be attracted. For example, printed circuit boards, which usually have copper traces, include contact pads made of a material to which a magnet will be attracted. Circuit components are connected to magnetic component connectors having magnetic legs which then connect the components to the contact pads of the circuit board or breadboard device. This makes the connection of components to a printed circuit board or breadboard device fast and easy and provides for easy removal and replacement of components. Magnetic component connectors can also be configured to connect magnetically to one another.
Abstract:
An electrically conductive element, including an insulator and a first conductor, is provided, which can be affixed to a second conductor consisting of conductive structural element, wherein the insulator is positioned between the first and second conductors to electrically isolate them. A power supply may be connected between the first and second conductors to provide power thereto, and an electrical device may be connected across the first and second conductors.
Abstract:
Printed circuit boards and breadboard devices have contact pads and magnetic component connectors where connection between the contact pads and the magnetic component connectors are made by magnetic force. Either the contact pad or the magnetic component connector will be magnetic and the other will be made of a material to which a magnet will be attracted. For example, printed circuit boards, which usually have copper traces, include contact pads made of a material to which a magnet will be attracted. Circuit components are connected to magnetic component connectors having magnetic legs which then connect the components to the contact pads of the circuit board or breadboard device. This makes the connection of components to a printed circuit board or breadboard device fast and easy and provides for easy removal and replacement of components. Magnetic component connectors can also be configured to connect magnetically to one another.
Abstract:
A method and apparatus for rapid and dynamic RF and Microwave circuit prototyping and integration provides a standard test fixture for testing any single device from any device vendors, provides a rapid dynamic tool for sub-system and system integration and prototyping, provides a flexibility to make any single function or multi-function assembled module quickly and economically. This prototyping approach can help RF/microwave companies share development times and costs. The combination of standard PCB function cells and dynamic standard mechanical cells helps build a prototype design quickly and reduce R&D costs.