Abstract:
PURPOSE: A method for manufacturing a semiconductor nano-wire sensor device and the semiconductor nano-wire sensor device which is manufactured by the same are provided to form a nano-wire on a bulk semiconductor substrate by performing a lithography process and an epitaxial growth process. CONSTITUTION: A first conductive monocrystalline semiconductor substrate(100) is prepared. A first conductive monocrystalline pattern(102) with a linear shape is formed on the first conductive monocrystalline semiconductor substrate. A second conductive epitaxial pattern is formed on the both sidewall of the first conductive monocrystalline pattern. A source and a drain electrodes are formed on the both end of the second conductive epitaxial patterns. A second conductive epitaxial layer(120) is formed on the first conductive monocrystalline pattern using an epitaxial growth process.
Abstract:
본 발명의 검출 소자는, 검출 커패시터 및 전계효과 트랜지스터를 포함하는데, 상기 검출 커패시터는, 유체 내의 특정 작용기에 반응하는 반응 물질층, 절연층의 양면에 위치한 제1 전극과 제2 전극을 구비하고, 상기 전계효과 트랜지스터는, 상기 제2 전극에 연결되는 소스 전극, 상기 제1 전극에 연결되는 게이트 전극, 드레인 전극을 구비한다. 여기서, 상기 검출 커패시터의 절연층 두께가 상기 전계효과 트랜지스터의 게이트 절연층 보다 더 두꺼운 것을 특징으로 한다. 검출 소자, 바이오 센서, 희석, 전계효과 트랜지스터
Abstract:
A schottky barrier single electron transistor and a manufacturing method thereof are provided to reduce a size of a quantum dot and to perform operations at a high temperature by preventing a short circuit between a gate electrode and a source/drain through a gate insulation film without use of a side wall insulation film. A source(270a) and a drain(270b) are formed on a substrate(210), and are made of metal silicide. A quantum dot(270c) is formed between the source and the drain. A gate insulation film(240) and a gate electrode(250) are successively formed on a top part of the quantum dot. The gate insulation film blocks short circuit of the gate electrode, the source, the drain, and the quantum dot. The substrate is a SOI(Silicon On Insulator) substrate in which a silicon wafer, a filling oxide film, and a silicon layer are successively formed. The source and the drain form the quantum dot and the schottky barrier.
Abstract:
A detection element containing a detection capacitor and transistor, which has excellent durability is provided to easily apply and change and improve the detection function. A detection element comprises a detection capacitor having a reaction material layer(600), a insulating layer(203) comprising a first electrode(403) and second electrode(163); a transistor containing a source electrode(121) which is connected to the second electrode, a gate electrode(401) which is connected to the first electrode, and drain electrode(122). A detection system comprises: a sample storage part in which sample fluid is stored; a solvent storage part in which solvent for diluting the sample is stored; a mixing pipe which mixes sample fluid and solvent; and a detection element for detecting a specific functional group in mixed fluid.
Abstract:
본 발명은 실리콘 발광소자 및 그 제조방법에 관한 것으로, 실리콘 발광층과 실리콘 발광층에 전압차를 인가하기 위한 전극들을 포함하여 구성된 실리콘 발광소자에 있어서, 실리콘 발광층의 상부와 하부 중 적어도 하나에 실리콘 카본 나이트라이드막을 구비하는 실리콘 발광소자 및 그 제조방법을 제공한다. 실리콘 발광소자, 실리콘 기판, 실리콘 카본 나이트라이드막, 실리콘 발광층
Abstract:
도핑층과 DBR(Distributed Bragg Reflector)을 동시에 채용한 실리콘 발광 소자에 관하여 개시한다. 본 발명에 따른 실리콘 발광 소자는 상호 반대 방향의 제1 면 및 제2 면을 가지는 활성층을 포함한다. 상기 활성층의 제1 면에는 제1 반사부가 대향하고 있고, 상기 활성층의 제2 면에는 제2 반사부가 대향하고 있다. 상기 활성층과 제1 반사부와의 사이에는 제1 도핑층이 개재되어 있고, 상기 활성층과 제2 반사부와의 사이에는 제2 도핑층이 개재되어 있다. 상기 제1 도핑층에 전기적으로 연결 가능한 제1 전극과, 상기 제2 도핑층에 전기적으로 연결 가능한 제2 전극이 형성되어 있다. 상기 제1 반사부 및 제2 반사부 중 적어도 하나는 서로 다른 조성을 가지는 2종의 실리콘함유 절연층이 교대로 적층되어 있는 DBR과 게이트를 포함한다.
Abstract:
PURPOSE: An optical recording head using a birefringent material is provided to increase depth of focus more than depth of focus formed by one focus, thereby easily controlling a focus without increasing the accuracy of a focus servo. CONSTITUTION: A solid immersion lens(204) is provided. A laser diode(201) generates an incident beam to be projected to the solid immersion lens. A polarizing beam splitter(202) is installed between the laser diode and the solid immersion lens. A photo diode(206) forms bits on a storage medium(205) through a birefringent optical element(209), a condenser(203), and the solid immersion lens. The photo diode detects a bit signal and a focus control signal through a signal light. A focus of a vertical polarized light(210) and a focus of a horizontal polarized light(211) are formed at different positions on an optical axis(201a), so that depth of focus is increased.
Abstract:
PURPOSE: A micro near-field optical data storage head using an SIL(Solid Immersion Lens) is provided to use the SIL for a big size lens, and to use diffraction elements for the rest parts, thereby minimizing the size. CONSTITUTION: An optical waveguide(201) has a plane shape. At least more than one condensing diffraction grating(203) is attached to one of both sides of the optical waveguide, and changes a path of an incident light(202) to an SIL(205). More than one optical division diffraction grating(210) is located between a light source and the condensing diffraction grating, and changes a path of a signal light(209). The SIL is composed of a curved part and a plane part, and concentrates the incident light on one point of the plane part. A coil(206) is attached to an option position of an optical storage head, and generates a magnetic field. The curved part of the SIL is formed on a sphere, hemisphere, or super-hemisphere, to make the incident light diffracted by the condensing diffraction grating form an optical point less than diffraction limits.
Abstract:
PURPOSE: A gap measuring apparatus for a solid immersion lens is provided to easily measure a gap formed between a storage medium and the solid immersion lens by detecting a distribution of interference signals. CONSTITUTION: A gap measuring apparatus includes a refracting device(201), and a light detecting device(202). The refracting device(201) allows internal total-reflection light(204) reflected from a lower plane(104a) of a solid immersion lens and transmission light(205) reflected from a surface of a storage medium(105) to be focused at one spot. The light detecting device(202) detects a light intensity distribution of an interference signal generated by the refracting device(201). The refracting device(201) includes at a refractive optical device having at least one lens. The light detecting device(202) includes photoelectronic device or a charge coupled device.
Abstract:
PURPOSE: An optical data storage device using an SIL(Solid Immersion Lens) and a waveguide diffraction grating coupler is provided to install an optical storage head device combining the waveguide diffraction grating coupler with the SIL and a cartridge, and to use an optical fiber for inducing light, thereby obtaining high storage density without polluting a head of an optical storage device and a storage medium. CONSTITUTION: A recording medium(101) rotates on the basis of the first rotation hub in a cartridge. One end of a rotary arm(102) is fixed into the second rotation hub in the cartridge. A flying head(104) is attached to a free end of the rotary arm, and writes data on the recording medium or reads the data from the recording medium. An optical waveguide is installed up to outside of the cartridge from the flying head. The rotary arm rotates within an angle where the rotary arm is capable of guiding the flying head up to an utmost inner track from an utmost outer track of the cartridge.