Abstract:
The present invention relates to a marked paper product comprising a sheet comprising a cellulosic or lignocellulosic fibrous paper material, wherein the cellulosic or lignocellulosic fibrous material of an irradiated discrete, predefined portion of the sheet contains functional groups or a number thereof not present in the sheet prior to irradiation or in a non-irradiated portion of the cellulosic or lignocellulosic fibrous paper material wherein the irradiated discrete portion of the sheet has been irradiated with a dose of ionizing radiation of at least 0.10 MRad sufficient to functionalize the cellulose or lignocellulose with said functional groups.
Abstract:
The present invention relates to a marked paper product comprising a sheet comprising a cellulosic or lignocellulosic fibrous paper material, wherein the cellulosic or lignocellulosic fibrous material of an irradiated discrete, predefined portion of the sheet contains functional groups or a number thereof not present in the sheet prior to irradiation or in a non-irradiated portion of the cellulosic or lignocellulosic fibrous paper material wherein the irradiated discrete portion of the sheet has been irradiated with a dose of ionizing radiation of at least 0.10 MRad sufficient to functionalize the cellulose or lignocellulose with said functional groups.
Abstract:
Described is a micro-fabricated charged particle emission device including a substrate and a plurality of charged particle emission sites formed in the substrate. A path extends between each emission site and a source of liquid metal. Each path is coated with a wetting layer of non-oxidizing metal for wetting the liquid metal. Exemplary non-oxidizing metals that may be used to provide the wetting layer include gold and platinum. The wetting layer is sufficiently thin such that some liquid metal is able to flow to each emission site despite any chemical interaction between the liquid metal and the non-oxidizing metal of the wetting layer.
Abstract:
In certain example embodiments of this invention, there is provide an ion source including an anode (25) and a cathode (5). In certain example embodiments, the cathode does not overhang over the anode, or vice versa. Since no, or fewer, areas of overhang are provided between the anode and cathode, there is less undesirable build-up on the anode and/or cathode during operation of the ion source so that the source can run more efficiently. Moreover, in certain example embodiments, an insulator (35) such as a ceramic or the like is provided between the anode and cathode.
Abstract:
A soft ionization device is disclosed that comprises a series of electrodes (120, 122) having spacing less than the means free path of the molecules to be ionized. In some embodiments, the soft ionization device (99) is used in various applications that require ion or electron sources such as biological or chemical reactors, ion milling, and numerous replacements for conventional hot cathode systems. In another embodiment, a valence spectrometer is disclosed that is configured to variably ionize molecules (301) by their valiancy. In other embodiments, the ionization device is coupled to a spectrometer for the characterization of biological matter. Also disclosed is a preconditioner for preparing biological matter to be ionized.
Abstract:
The invention is directed to a discharge device and a cathode for use in such a discharge device. By providing a dielectric layer between a first and a second electrode, e.g. between a cathode and an anode, said dielectric layer having an opening aligned with a micro hollow of the first electrode, the light efficiency of the discharge device can be improved.