액상법에 의한 탄소나노튜브의 제조방법
    141.
    发明授权
    액상법에 의한 탄소나노튜브의 제조방법 失效
    液相碳源碳纳米管的制备方法

    公开(公告)号:KR100746311B1

    公开(公告)日:2007-08-06

    申请号:KR1020030020858

    申请日:2003-04-02

    Abstract: This invention relates to a method to induce growth of carbon nanotubes using a liquid phased-hydrocarbon based material under a critical range of equilibrating between liquid and gas phases, thereby easily manipulating a required carbon source. This invention also relates to a method to facilitate easy generation of a carbon backbone of the carbon nanotube because the reaction is performed in the presence of a metal nanoparticle or a metal compound capable of spontaneously generating a seed catalyst which stimulates the growth of carbon nanotubes as well as secures safety enough for the industrial application by using a mild reaction condition within the critical range. Accordingly, this invention can produce the carbon nanotube with high transition efficiency under a mild condition with a relatively lower temperature and pressure than those in conventional gas phased-methods without using a costly equipment, thereby cost-effectively producing the carbon nanotube in large quantities.

    콜로이드상 양자점의 제조방법
    142.
    发明授权
    콜로이드상 양자점의 제조방법 有权
    콜로로양자점의제조방법

    公开(公告)号:KR100678764B1

    公开(公告)日:2007-02-06

    申请号:KR1020060019631

    申请日:2006-02-28

    Abstract: A fabrication method of colloidal quantum dot nano-particle is provided to obtain the quantum dot having favorable concentration, particle size and bandgap energy without using expensive and toxic materials such as TOP or TOPO by adding bivalent anion type of sixth group metal(M2^2-) solution to second group metal(M1^2+) oleate. The method includes: first step of preparing second group metal oleate by reacting oleic acid in second group metal precursor solution of any one selected from Cd, Pb and Zn; second step of preparing a solution containing bivalance anionic sixth group metal by dissolving precursor of sixth group metal or cationic sixth group metal in a solvent with high boiling point of 200 to 350deg.C and proceeding reductive reaction of the solution at 100 to 200deg.C; and third step of producing colloidal quantum dot nano-particles by reacting the prepared oleate of second group metal and the prepared solution containing bivalance anionic sixth group metal at 100 to 250deg.C.

    Abstract translation: 本发明提供一种胶体量子点纳米粒子的制备方法,通过添加二价阴离子型第六族金属(M2 ^ 2),不需要使用TOP或TOPO等昂贵有毒物质,获得具有良好浓度,粒径和带隙能量的量子点 - )第二组金属(M1 ^ 2 +)油酸盐的溶液。 该方法包括:第一步,通过使油酸在选自Cd,Pb和Zn中任一种的第二族金属前体溶液中反应制备第二族金属油酸盐; 第二步,通过将第六族金属或阳离子第六族金属的前体溶解在高沸点为200-350℃的溶剂中并在100-200℃下进行该溶液的还原反应,制备含有双离子阴离子第六族金属的溶液.C ; 以及第三步,通过将所制备的第二组金属的油酸盐和所制备的含有双离子阴离子第六族金属的溶液在100至250℃下反应来制备胶体量子点纳米颗粒。

    변형전극을 갖는 탄소 나노튜브 트랜지스터
    143.
    发明公开
    변형전극을 갖는 탄소 나노튜브 트랜지스터 失效
    具有涂覆在电极中的SU-8电阻的碳纳米管晶体管

    公开(公告)号:KR1020070002119A

    公开(公告)日:2007-01-05

    申请号:KR1020050057443

    申请日:2005-06-30

    Abstract: A carbon nanotube transistor having a deformation electrode is provided to increase the work function of a metal and to effectively induce hole doping by using an SU-8 negative photoresist on an electrode of the carbon nanotube transistor. An alignment marker is formed on a SiO2/Si substrate(10). A pattern of liquid catalyst is manufactured using a PMMA(polymethylmethacrylate) layer on the SiO2/Si substrate that is insulated by a SiO2 layer. The PMMA layer is removed by an acetone solution. A single walled carbon nanotube(14) is grown at CH4 and H2 atmosphere during 10 minutes in a furnace of 900 ‹C. An electrode(12) is formed by performing photolithography and thermal evaporation on the carbon nanotube. The electrode is connected to the carbon nanotube to configure a carbon nanotube transistor and then an SU-8 negative photoresist(16) is coated on the carbon nanotube transistor to form an insulating layer.

    Abstract translation: 提供具有变形电极的碳纳米管晶体管,以增加金属的功函数,并且通过在碳纳米管晶体管的电极上使用SU-8负性光刻胶来有效地诱导空穴掺杂。 在SiO 2 / Si衬底(10)上形成取向标记。 使用由SiO 2层绝缘的SiO 2 / Si衬底上的PMMA(聚甲基丙烯酸甲酯)层制造液体催化剂的图案。 通过丙酮溶液除去PMMA层。 在900℃的炉中,在CH 4和H 2气氛下10分钟内生长单壁碳纳米管(14)。 通过对碳纳米管进行光刻和热蒸发来形成电极(12)。 电极与碳纳米管连接以构成碳纳米管晶体管,然后在碳纳米管晶体管上涂覆SU-8负性光致抗蚀剂(16)以形成绝缘层。

    단백질 나노입자를 이용한 탄소나노튜브 트랜지스터 및이의 제조 방법
    144.
    发明公开
    단백질 나노입자를 이용한 탄소나노튜브 트랜지스터 및이의 제조 방법 失效
    使用蛋白质纳米颗粒的碳纳米管管晶体及其制造方法

    公开(公告)号:KR1020070001405A

    公开(公告)日:2007-01-04

    申请号:KR1020050056879

    申请日:2005-06-29

    CPC classification number: H01L29/0665 B82Y40/00 H01L21/02606 H01L29/0669

    Abstract: A carbon nano-tube using protein nanoparticles and its manufacturing method are provided to vary a current of a channel largely by absorbing nanoparticles coated with protein at an interface between a metal electrode and a carbon nano-tube. A carbon nano-tube transistor is comprised of a metal source electrode(30), a metal drain electrode, a gate, a channel region made of a carbon nano-tube(20). Nanoparticles(40) are absorbed at interfaces between the carbon nano-tube and the metal source electrode, and between the carbon nano-tube and the metal drain electrode. The nanoparticles are coated with protein and have charged states being easily changed according to variation of a gate voltage. The protein coated on the nanoparticles is streptavidin.

    Abstract translation: 提供了使用蛋白质纳米颗粒的碳纳米管及其制造方法,以通过在金属电极和碳纳米管之间的界面处吸收由蛋白质包被的纳米粒子来改变通道的电流。 碳纳米管晶体管由金属源电极(30),金属漏电极,栅极,由碳纳米管(20)制成的沟道区域构成。 纳米颗粒(40)在碳纳米管和金属源电极之间以及碳纳米管和金属漏极之间的界面处被吸收。 纳米颗粒用蛋白质包被,并且根据栅极电压的变化容易地改变带电状态。 涂覆在纳米颗粒上的蛋白质是链霉亲和素。

    단일벽 나노튜브를 이용한 기체 센서 및 그 제조방법
    145.
    发明授权
    단일벽 나노튜브를 이용한 기체 센서 및 그 제조방법 失效
    单壁碳纳米管气体传感器及其制造方法

    公开(公告)号:KR100534203B1

    公开(公告)日:2005-12-07

    申请号:KR1020030074318

    申请日:2003-10-23

    Abstract: 본 발명에 따른 단일벽 탄소나노튜브를 이용한 기체 센서의 제조방법은 센서용 전극 패턴을 새롭게 설계하는 단계(a)와, 탄소나노튜브를 전극 패턴 위에 떨어뜨리고 인접한 두 전극 사이로 수평 이동시키는 단계(b)를 포함하며, 단계(b)는 전극 패턴위에 탄소나노튜브를 떨어뜨려 일정시간 정지 상태로 유지하는 단계와, 500rpm 이상의 고속으로 탄소나노튜브가 놓인 전극 패턴을 회전시켜 나노튜브가 원심력을 받도록 하는 단계와, 메탄올을 이용하여 불순물 나노입자와 전극 패턴에 놓이지 못한 잔류 나노튜브를 제거하여 전극 패턴을 세정하는 단계를 포함한다.
    이와 같은, 본 발명에 의하면 탄소나노튜브를 화학기상증착법으로 직접 성장시킨 후 전극을 성장한 나노튜브 위에 부착시키는 고비용의 매우 어려운 공정으로 이루어진 직접 성장법과, IDT(Interdigitated) 구조로 전극을 만들고 탄소나노튜브를 그 위에 떨어뜨려 다량의 나노튜브가 다수의 위치에서 전극과 병렬 연결되도록 제조하는 직접 부착법이 갖고 있는 단점, 즉 낮은 감도 및 느린 회복속도를 쉽게 극복하고, 기존 두가지 방법의 장점만을 획득할 수 있는 효과를 제공한다.

    전도성 세라믹 전극 및 이를 포함하는 정전척
    146.
    发明授权
    전도성 세라믹 전극 및 이를 포함하는 정전척 失效
    导电陶瓷电极并包括静电卡盘

    公开(公告)号:KR100497953B1

    公开(公告)日:2005-06-29

    申请号:KR1020020046076

    申请日:2002-08-05

    Abstract: 세라믹 절연층에 적용되는 전도성 세라믹 전극 및 이를 포함하는 정전척이 개시되어 있다. 상기 전도성 세라믹 전극은 티타늄(Ti)을 포함하는 전도성 세라믹 물질로 이루어져 있다. 그리고, 세라믹 정전척은 반도체 기판이 놓여지는 제1세라믹 절연층과 상기 제1절연층 하부에 위치하는 제2세라믹 절연층이 구비되어 있다. 상기 제1 및 제2세라믹 절연층 사이에 위치하고, 상기 제1 및 제2세라믹 절연층과 적합성(compatability)을 높이기 위해 티타늄을 포함하는 전도성 세라믹 물질로 이루어진 전도성 세라믹 전극을 포함하고 있다. 상기와 같은 구성을 갖는 정전척은 전도성 세라믹 전극을 사용함으로서, 세라믹 절연층과 적합성이 우수하고, 상기 정전척의 우수한 성능 및 긴 수명을 제공할 수 있다.

    질화규소와 탄소강의 접합방법
    147.
    发明授权
    질화규소와 탄소강의 접합방법 失效
    连接氮化硅和碳钢的方法

    公开(公告)号:KR100277204B1

    公开(公告)日:2001-01-15

    申请号:KR1019980029908

    申请日:1998-07-24

    Inventor: 이재도 최영민

    Abstract: 본 발명은 질화규소와 탄소강의 접합방법에 관한 것으로서, 더욱 상세하게는 질화규소(Si
    3 N
    4 )를 열처리하여 금속실리콘(Si)과 질소기체(N
    2 )로 해리시킴으로써 질화규소 표면을 금속실리콘(Si) 층으로 개질시키고, 개질된 질화규소 표면의 금속실리콘(Si)과 탄소강의 Fe 사이의 공융(eutectic melting)을 유도하여 직접 접합하거나, 필요하다면 Ag-Cu계 일반납재를 사용하여 질화규소와 탄소강을 접합시키는 방법에 관한 것이다. 본 발명의 접합방법은 Ti 등의 활성금속이 포함된 고가의 Ag-Cu-Ti계 활성납재를 사용하지 않아도 충분한 접합효과를 얻을 수 있고, 또한 활성 금속 코팅을 위한 스퍼터링 등의 공정을 거치지 않으므로 생산비 절감의 효과가 우수하다.

Patent Agency Ranking