Abstract:
Provided is an illumination device that includes a light emitting device having a first electrode and a second electrode and a mounting substrate including a first wiring pattern and a second wiring pattern. The first wiring pattern and the second wiring pattern face and are bonded to the first electrode and the second electrode, respectively, through a bonding material. The second electrode and the second wiring pattern are configured to be at least partially overlapped with each other in a plan view irrespective of an orientation of the light emitting device, under condition that the first electrode and the first wiring pattern are at least partially overlapped with each other in the plan view.
Abstract:
A printed wiring board including an insulation layer, a conductive circuit on the insulation layer, an outermost interlayer resin insulation layer formed on the insulation layer and the conductive circuit and having a via-conductor opening connected to the conductive circuit, a land structure including a first land formed on the outermost interlayer resin insulation layer around the via-conductor opening and a second land formed on the outermost interlayer resin insulation layer around the first land, and a via conductor formed in the via-conductor opening through the outermost interlayer resin insulation layer such that the first land of the land structure on the outermost interlayer resin insulation layer is connected to the conductive circuit on the insulation layer. The land structure has a space between the first land and second land of the land structure, and the first land of the land structure is directly connected to the via conductor.
Abstract:
A circuit board includes a board, a first signal trace and a second signal trace on the board, a first solder pad formed on the board and connected to a terminal of the first signal trace near to one end of the second signal trace, and a second pad formed on the board and connected to a terminal of the second signal trace near to the first solder pad. The second pad is apart from the first pad. The first pad or the second pad is coated with solder. After heated, the solder melts and spread to the second pad or the first pad, thereby connecting the first signal trace to the second signal trace.
Abstract:
A cut-edge positioning type soldering structure and a method for preventing a pin deviation can prevent a plurality of pins of an electronic component from being deviated when the pins are soldered onto a printed circuit board by a solder, and each of at least two solder pads includes at least two cut edges, and the solder pads are installed in an alignment direction on the printed circuit board, such that the cut-edge positioning type soldering structure and the method for preventing a pin deviation can improve the efficiency of manufacturing processes and reduce the manufacturing cost.
Abstract:
A notch positioning type soldering structure and a method for preventing a pin deviation can prevent a plurality of pins of an electronic component from being deviated when the pins are soldered onto a printed circuit board by a solder, and each of at least two solder pads includes at least one notch, and the solder pads are installed in an alignment direction on the printed circuit board, such that the notch positioning type soldering structure and the method for preventing a pin deviation can improve the efficiency of manufacturing processes and reduce the manufacturing cost.
Abstract:
A printed wiring board including an insulation layer, a conductive circuit on the insulation layer, an outermost interlayer resin insulation layer formed on the insulation layer and the conductive circuit and having a via-conductor opening connected to the conductive circuit, a land structure including a first land formed on the outermost interlayer resin insulation layer around the via-conductor opening and a second land formed on the outermost interlayer resin insulation layer around the first land, and a via conductor formed in the via-conductor opening through the outermost interlayer resin insulation layer such that the first land of the land structure on the outermost interlayer resin insulation layer is connected to the conductive circuit on the insulation layer. The land structure has a space between the first land and second land of the land structure, and the first land of the land structure is directly connected to the via conductor.
Abstract:
A technique for processing a circuit board involves placing a mask layer on the circuit board, where the mask layer defines a set of pad profiles for a component mounting location. Each pad profile has a set of rounded corners. The technique further involves forming, for each pad profile, a soldering pad having a set of radii corresponding to the set of rounded corners of that pad profile to create a set of soldering pads for the component mounting location. Each soldering pad is configured for a high bond strength solder joint. The technique further involves removing the mask layer from the circuit board and soldering a component to the component mounting location. This technique is well-suited for robustly mounting the component to the circuit board at solder joints with relatively high solder joint bond strengths.
Abstract:
There is disclosed herein a printed circuit board (PCB) having enhanced mounting pads useful for overprinting solder paste and for repair of the solder joints. The PCB comprises: a dielectric substrate 10 having at least one mounting pad 20 thereon, wherein each mounting pad is arranged in matched relation with a respective termination 32 of an electronic component 30. Each mounting pad 20 includes a main body portion 24 and one or more fingerlike extensions 26 extending outward from the main body portion and away from a projected footprint 34 of the electronic component.
Abstract:
An etched tri-metal-layer air bridge circuit board specially designed for fine-pitch applications, comprising: an electrically insulative substrate surface, a plurality of tri-metal-layer bond pads arranged in a generally straight row on the substrate surface wherein the row defines a width direction therealong, and a circuit trace arranged on the substrate surface, wherein the circuit trace runs between two adjacent ones of the plurality of tri-metal-layer bond pads. Each bond pad comprises: (1) a bottom layer attached to the substrate surface, the bottom layer being made of a first metal and having an overall width W1 as measured along the width direction; (2) a top layer disposed above and generally concentric with the bottom layer, the top layer being made of the first metal and having an overall width W2 as measured along the width direction; and (3) a middle layer made of a second metal connecting the bottom layer and the top layer. The bond pads are specially shaped such that W2>W1 for at least the two adjacent bond pads, thus enabling the circuit trace to be spaced closely to the bottom layers of the two adjacent bond pads, while allowing the top layers of the pads to be made much larger so as to avoid delamination thereof from their associated middle layers.
Abstract:
A flexible printed circuit board assembly comprising a first flexible printed circuit board and a second flexible printed circuit board, wherein each of the first and second flexible printed circuit boards is provided with a position fixing coupling to determine the position of the second flexible printed circuit board relative to the first flexible printed circuit board.