Abstract:
Complex and fine patterns may be formed by an exposure apparatus that decreases movement error of a stage including a beam generating section that generates a charged particle beam, a stage section that has a sample mounted thereon and moves the sample relative to the beam generating section, a detecting section that detects a position of the stage section, a predicting section that generates a predicted drive amount obtained by predicting a drive amount of the stage section based on a detected position of the stage section, and an irradiation control section that performs irradiation control for irradiating the sample with the charged particle beam, based on the predicted drive amount.
Abstract:
In one embodiment, a charged particle beam drawing apparatus deflects a charged particle beam with a deflector to draw a pattern. The apparatus includes a storage unit that stores an approximate formula indicating a correspondence relationship between a settling time for a DAC amplifier that controls the deflector, and a position shift amount, from a design position, of a drawn position of each evaluation pattern drawn on a first substrate while the settling time and an amount of deflection by the deflector are changed, a shot position correction unit that creates a correction formula indicating a relationship between an amount of deflection and a shot position shift amount at the settling time, from the approximate formula and the settling time for the DAC amplifier based on an amount of deflection of a shot, obtains a position correction amount by using the amount of deflection of the shot and the correction formula, and corrects a shot position defined by the shot data based on the position correction amount, and a drawing unit that performs drawing by using the shot data with a corrected shot position.
Abstract:
A blanking device for multi-beams includes arrayed plural separate blanking systems, each performing blanking control switching a corresponding beam of multi charged particle beams between a beam ON state and a beam OFF state and each including a first electrode, a first potential applying mechanism applying two different potentials selectively to the first electrode for the blanking control, and a second electrode performing blanking deflection of the corresponding beam, the second electrode being grounded and paired with the first electrode, and a potential change mechanism changing a potential of the second electrode from a ground potential to another potential, wherein when a potential of the first electrode included in one of the separate blanking systems is fixed to the ground potential, the potential change mechanism changes the potential of the second electrode corresponding to the first electrode fixed to the ground potential, from the ground potential to the another potential.
Abstract:
An object of the present invention is to realize both of the accuracy of measuring the amount of secondary electron emissions and the stability of a charged particle beam image in a charged particle beam device. In a charged particle beam device, extraction of detected signals is started by a first trigger signal, the extraction of the detected signals is completed by a second trigger signal, the detected signals are sampled N times using N (N is a natural number) third trigger signals that equally divide an interval time T between the first trigger signal and the second trigger signal, secondary charged particles are measured by integrating and averaging the signals sampled in respective division times ΔT obtained by equally dividing the interval time T, and the division time ΔT is controlled in such a manner that the measured number of secondary charged particles becomes larger than the minimum number of charged particles satisfying ergodicity.
Abstract:
A method of processing a substrate in an apparatus including a substrate holder which holds the substrate, an ion source which emits an ion beam, a neutralizer which emits electrons, and a shutter which is arranged between a space in which the ion source and the neutralizer are arranged and a space in which the substrate holder is arranged, and configured to shield the ion beam traveling toward the substrate, includes adjusting an amount of electrons which are emitted by the neutralizer and reach the substrate holder during movement of the shutter.
Abstract:
An ozone supplying apparatus according to an embodiment of the present invention is an ozone gas supplying apparatus which supplies an ozone gas to a vacuum apparatus. The ozone supplying apparatus includes an ozone generator configured to generate the ozone gas, a first flow controller configured to control a flow rate of the ozone gas generated by the ozone generator, a second flow controller configured to control a flow rate of the ozone gas supplied to the vacuum apparatus, and a main pipe provided on a secondary side of the first flow controller and on a primary side of the second flow controller, with the ozone gas being introduced into the main pipe at such a flow rate that an internal pressure of the main pipe is controlled to be lower than atmospheric pressure by the first flow controller.
Abstract:
An exposure pattern is computed which is used for exposing a desired pattern on a target in a charged-particle multi-beam processing apparatus so as to match a reference writing tool, possible of different type: The desired pattern is provided as a graphical representation suitable for the reference tool, such as a raster graphics, on the image area on the target. A convolution kernel is used which describes a mapping from an element of the graphical representation to a group of pixels which is centered around a nominal position of said element. A nominal exposure pattern is calculated by convolution of the graphical representation with the convolution kernel, said nominal exposure pattern being suitable to create a nominal dose distribution on the target when exposed with the processing apparatus.
Abstract:
There are disclosed herein various implementations of a method and system for ion implantation at high temperature surface equilibrium conditions. The method may include situating a III-Nitride semiconductor body in a surface equilibrium chamber, establishing a gas pressure greater than or approximately equal to a surface equilibrium pressure of the III-Nitride semiconductor body, and heating the III-Nitride semiconductor body to an elevated implantation temperature in the surface equilibrium chamber while substantially maintaining the gas pressure. The method also includes implanting the III-Nitride semiconductor body in the surface equilibrium at the elevated implantation temperature chamber while substantially maintaining the gas pressure, the implanting being performed using an ion implanter interfacing with the surface equilibrium chamber.
Abstract:
The invention relates to a method for performing charged particle beam proximity effect correction, comprising the steps of: receiving a digital layout pattern to be patterned onto a target using one or more charged particle beams; selecting a base proximity function comprising a sum of an alpha and a beta proximity function, wherein said alpha proximity function models a short range proximity effect and said beta proximity function models a long range proximity effect, wherein a constant η is defined as a ratio between the beta proximity function and the alpha proximity function in said sum, with 0
Abstract:
A multi-element electrostatic chicane energy filter, with the addition of electrostatic quadrupole and hexapole excitations to the dipole elements. A charged particle energy filter according to the present invention with a combination of dipole, quadrupole, and hexapole elements capable of producing a line focus at an aperture reduces space-charge effects and aperture damage. A preferred embodiment allows the filter to act as a conjugate blanking system. The energy filter is capable of narrowing the energy spread to result in a smaller beam.