Abstract:
PURPOSE: An exhaust gas purification device is provided to completely oxidize HC and CO included in the exhaust gas by mounting a DOC unit between a CPF unit and a SCR unit. CONSTITUTION: An exhaust gas purification device comprises a smoke reducing unit(30), a diesel oxidation catalyst(40), a blow nozzle(50) and an optional catalytic reduction unit(60). The smoke reducing unit oxidizes hydrocarbon and carbon monoxide included in the exhaust gas using a first diesel oxidation catalyst. The smoke reducing unit collects and reproduces the particulates. The diesel oxidation catalyst is installed in the backend of a CPF unit and oxidizes HC and CO using a second DOC. The diesel oxidation catalyst oxidizes the nitrogen oxide to nitrogen dioxide using second DOC. The blow nozzle is established at the DOC unit backend and spays the reducing agent on the exhaust gas from the DOC unit. The optional catalytic reduction unit is installed the backend of the blow nozzle and restores the nitric oxide within the exhaust to the nitrogen gas.
Abstract:
A nitrogen oxide reduction system within exhaust gas is provided to reduce NOx within the exhaust gas because NOx is returned in the SCR apparatus by oxidizing NO to NO2 using NO2. A nitrogen oxide reduction system within exhaust gas comprises a DOC(Diesel Oxidation Catalyst) unit(30), a CPF(Catalyzed Particulate Filter) unit(40), a injection nozzle(50) and a SRC(Selective Catalytic Reduction) uint(60). The DOC unit oxidizes total hydrocarbon(THC) and carbon monoxide(CO) included in the exhaust gas with the first diesel oxidation catalyst primarily. The CPF is installed at the rear end of the DOC unit and is delivered the exhaust gas oxidized primarily. In the CPF, THC and CO are oxidized in the first oxidation reaction with the heat of oxidation and the generated second DOC secondarily. The NO(Nitrogen MONOxide) is oxidized with the heat of oxidation and the second DOC to the NO(Nitrogen Dioxide)2.
Abstract:
PURPOSE: A DPF(Diesel Particulate Filter) for a vehicle is provided to equalize the inlet velocity distribution of the exhaust gas of an engine by positioning a unit cell with large cell density and small porosity in the center and a unit cell with small cell density and large porosity toward the radial direction in order. CONSTITUTION: In a DPF(10) for a vehicle having a plurality of lattice-shaped cell structures, the cell density of the cell structure divided in the DPF gradually gets smaller from the center to the radial direction and the porosity gets larger gradually. The cell density and porosity of an A area of one cell structure formed in the center of the DPF is 300 and 52%, respectively. The cell density and porosity of a B area of the cell structure composed of at least unit cells(11) is 200 and 52%, respectively. The cell density and porosity of a C area of the cell structure formed in the radial direction of the B area is 100 and 60%, respectively.
Abstract:
본 발명의 실시예에 따른 입자상물질 센서유닛은 배기가스가 지나는 배기라인, 및 상기 배기라인의 일측에 설치되어, 상기 배기가스에 포함된 입자상물질이 인접하여 지날 때 신호를 발생시키는 피엠센서를 포함하고, 상기 피엠센서는, 그 전면부에 돌출되어 형성되고, 설정된 폭간격과 설정된 길이간격을 두고 배열되는 돌출부, 그 후면부에는 양단에서 공급되는 전류에 의해서 열을 발생시켜, 상기 전면부에 부착된 입자상물질을 태워 제거하는 히터전극, 및 상기 히터전극과 인접하여 상기 신호를 외부로 전달하기 위한 센싱전극패드를 포함한다. 따라서, 디젤매연필터(DPF)의 매연(soot)과 같은 입자상물질의 포집량이나 배기가스에 포함된 입자상물질의 양을 정밀하게 판단함으로써 강화되는 배기가스 규제에 효과적으로 대응할 수 있다.
Abstract:
본 발명은 GPF내부의 온도 조건을 이용하여 GPF가 손상되지 않도록 CDA적용 기통수를 결정토록 하는 CDA 적용 차량의 GPF 손상 방지방법에 관한 것이다. 본 발명에 따른 CDA 적용 차량의 GPF 손상 방지방법은, GPF(30, Gasoline Particulate Filter)의 차압을 주기적으로 측정하고 측정된 GPF(30)의 차압에 따라 GPF(30) 내부의 수트(soot) 퇴적량을 산출하는 GPF차압 모니터링단계(S110)와, 상기 GPF차압 모니터링단계(S110)에서 측정된 GPF(30)의 차압을 GPF(30)를 재생하도록 미리 설정된 재생필요차압과 비교하는 차압비교단계(S120)와, 상기 차압비교단계(S120)에서 GPF내의 차압이 재생필요차압보다 높으면, GPF차압에 따른 수트 퇴적량과 CDA운전에 따른 각 CDA모드별 배기가스의 평균 산소농도에 의해, 각 CDA(Cylinder De-activation)모드에 따른 GPF내의 온도를 산출하는 GPF 온도 산출단계(S130)와, 산출된 GPF온도를 이용하여 상기 GPF가 파손되지 않은 온도 이내에서 CDA적용 실린더수를 결정하는 CDA 모드 설정단계(S140)를 포함한다.
Abstract:
PURPOSE: A method for disposing exhaust gas is provided to precisely detect the damage of a diesel particulate filter using differential pressure between the front and the rear end of the diesel particulate filter. CONSTITUTION: A method for disposing exhaust gas includes: a step of calculating the model amount of a sensor collecting particulate collected by a particulate sensor(140) under the normal condition of a diesel particulate filter(130) based on a condition for engine driving and the variation of the condition; a step of calculating the actual amount of the sensor collecting particulate attached to the particulate sensor using the actual signal of the particulate sensor; and a step of the status of the diesel particulate sensor by comparing the model amount of the sensor collecting particulate and the actual amount of the sensor collecting particulate.
Abstract:
PURPOSE: A desulfurization method of a nitrogen oxide absorbing catalyst system is provided to simplify the regeneration logic of desulfurization by deciding the desulfurization time based on the number of success in the regeneration of DPF(Diesel Particulate Filter), since all the trace sulfur compounds included in the exhaust gas ejected when the ultra low sulfur diesel oil is used become poison to an LNT(Lean NOx Trap) catalyst. CONSTITUTION: A desulfurization method of a nitrogen oxide absorbing catalyst system comprises the following steps: determining(S110) whether the number of the success of DPF regeneration reaches the predetermined number of the success of DPF regeneration or not; performing(S120) desulfurization by terminating the DPF regeneration when the number of success of the DPF regeneration reaches the predetermined number of success of the DPF regeneration; entering the desulfurization mode; terminating(S160) the desulfurization after performing the desulfurization for the predetermined time; calculating and calibrating(S170) the amount of the collected PM-10(fine dust) in the DPF generated during the time of desulfurization after the termination of the desulfurization; determining the time for the following DPF regeneration; and comparing the temperature(T) of the inside of the nitrogen oxide absorbing catalyst with the deterioration temperature(X) of the nitrogen oxide absorbing catalyst during the time of the desulfurization. [Reference numerals] (S100) Normal NO_X purification operation mode; (S110) Reaching a predetermined number of success of DPF regeneration?; (S120) Immediately entering a desulfurization mode after terminating the DPF regeneration; (S130) Maintaining a lambda(λ) value below a predetermined value; (S140) LNT catalyst inside temperature(T) > Deterioration temperature(X) ?; (S150) Desulfurization for a predetermined time?; (S160) Terminating the desulfurization; (S170) Calculating and correcting the amount of PM collected in a DPF caused by PM produced during the desulfurization; (S180) Switching the mode to a normal lean operation for preventing overheating of catalyst; (S190) LNT catalyst inside temperature(T) ≤ Predetermined temperature(Y)
Abstract:
본 발명은 엔진에서 발생되는 배기 가스에 포함된 질소산화물의 양을 정확히 예측하는 방법 및 상기 질소산화물의 양에 따라 분사되는 환원제의 양을 조절하거나 연소 분위기를 조절하는 배기 장치에 관한 것이다. 본 발명의 실시예에 따른 질소산화물의 양을 예측하는 방법은 엔진의 운전 조건에 따라 기준 NOx양을 계산하는 단계; EGR(Exhaust Gas Recirculation)율에 따라 상기 기준 NOx양을 1차로 보정하는 단계; 그리고 환경 인자에 따라 1차로 보정된 NOx양을 2차로 보정하는 단계;를 포함할 수 있다.