Abstract:
PURPOSE: A cathode material is provided to realize a high capacitance and a high power by inserting a lithium ion into a cathode material through an ion exchange method, thereby being variously applied to a high-capacity lithium secondary battery for an electric car, a mobile device, a high-capacity power storage system, and the like. CONSTITUTION: A cathode material for a lithium secondary battery includes a lithium transition metal based fluorophosphates compound, which is represented by Chemical Formula 1 of Li2MPO4F and has a crystalline structure of a P2_1/n space group. Here, P means that lattice points exist at only eight vertexes in a parallelepiped structure; 2_1 means the presence of a two-fold rotation screw axis by a translation of 1/2 of a lattice vector; and n means the presence of a glide plane by a translation of 1/2 of the diagonal length of a unit lattice in a diagonal direction. In Chemical Formula 1, M is a transition metal selected from Mn, Sc, Ti, V, Cr, Fe, Co, Ni, and Cu.
Abstract:
PURPOSE: A positive electrode material for secondary batteries is provided to obtain excellent charging and discharging performance by securing a diffusion path for lithium in the positive electrode material, thereby improving electrochemical performance of secondary batteries. CONSTITUTION: A positive electrode material includes a manganese-based fluorinated phosphoric acid compound represented by chemical formula, Li_xNa_(2-x)MnPO_4F. A manufacturing method of the positive electrode material comprises a step of uniformly mixing sodium oxide or a precursor thereof, manganese oxide or a precursor thereof, phosphoric oxide or a precursor thereof, and fluoride oxide or a precursor thereof, pre-treating the mixture, and synthesizing Na_2MnPO_4F by sintering; and a step of inserting lithium into the positive electrode material and synthesizing Li_xNa_(2-x)MnPO_4F by using an ion exchange method.
Abstract:
PURPOSE: An anode material for lithium secondary battery is provided to be able to use cathode materials without a lithium source for making a lithium secondary battery and to increase the discharged voltage of a secondary battery. CONSTITUTION: An anode material for lithium secondary battery comprises lithium manganese hexafluoride compound which is expressed in the formula Li2MnPO4F. a method of manufacturing the anode material comprises; a step of mixing sodium oxide or a precursor of sodium oxide, manganese or a precursor of manganese, phosphorus or a precursor of phosphorus and fluoride or a precursor of fluoride using a ball mill, and heating the mixed materials to synthesize Na2MnPO4F and a step to add lithium into the synthesized materials through an ion-exchanging process to synthesize Li2MnPO4F.
Abstract:
본 발명은 본 발명은 이차전지용 양극재료 및 이의 제조방법에 관한 것으로서, 더욱 상세하게는 리튬 혹은 나트륨을 포함하는 망간불화인산화물을 전극재료로 사용할 수 있도록 한 이차전지용 양극재료 및 이의 제조방법에 관한 것이다. 즉, 본 발명은 리튬 혹은 나트륨을 포함하는 망간불화인산화물을 전극재료로 사용 가능하도록 한 점, 나노입자화에 기인한 짧은 리튬 확산거리로 인하여 나트륨/리튬의 삽입/탈리 반응이 가능한 리튬/나트륨 전지의 양극재료를 제공할 수 있는 점, 그리고 효과적인 카본코팅을 통한 전기전도도 향상으로 전기화학적 활성을 가지는 리튬/나트륨 전지의 양극재료를 제공할 수 있는 점 등을 달성하기 위한 이차전지용 양극재료 및 이의 제조방법을 제공하고자 한 것이다.
Abstract:
PURPOSE: A manufacturing method of a secondary battery electrode including a porous insulating layer and an electrode manufactured with the manufacturing method are provided to simplify formation process of the porous insulating layer and to obtain strong structural stability. CONSTITUTION: A manufacturing method of a secondary battery electrode including a porous insulating layer comprises the following steps: coating electrode layer slurry on surface of an electrode(100); spreading the porous insulating layer before the electrode layer is dried; and desiccating the electrode layer slurry and the porous insulating layer coated slurry at the same time. The porous insulating layer is independently coated with inorganic compound powder or with a compound powder of the functional inorganic compound additive and inorganic compound powder.
Abstract:
PURPOSE: A cross-linked ceramic-coated separator is provided to suppress thermal shrinkage at a high temperature due to heat resistance and mechanical property of ceramic materials and to improve resistance to external penetration. CONSTITUTION: A method for manufacturing a cross-linked ceramic-coated separator containing an ionic polymer comprises the steps of: (i) preparing a polymer solution by dissolving an ionic polymer in a solvent; (ii) preparing inorganic dispersion by dispersing ceramic particles and functional inorganic compounds in a solvent; (iii) uniformly mixing a hardener and an initiator into the two obtained solutions; (iv) applying the coating material solution to one side or both sides of a porous film substrate; (v) cross-linking the coated substrate through thermal polymerization or UV irradiation; and (vi) drying the manufactured separators.
Abstract:
PURPOSE: An olivine type positive active material for a lithium second battery is provided to produce a lithium secondary battery with high energy density due to a carbon coating layer with high conductivity. CONSTITUTION: An olivine type positive active material for a lithium second battery comprises a core material represented by chemical formula 1: Li_xM_yM'_zXO_(4-w)B_w and a carbon coating layer with high conductivity which surrounds the core material. The carbon coating layer includes at least one or two kinds of carbon precursor selected from polyvinylpyrrolidone, water-soluble polymer and conductive polymer.