Abstract:
PROBLEM TO BE SOLVED: To provide a method for forming a substrate contact in a substrate with a silicon-on-insulator region. SOLUTION: A shallow isolation trench is formed in a silicon-on-insulator. The shallow isolation trench is filled. A photoresist is glued onto a substrate. A contact trench is formed in the substrate through the filled, shallow isolation trench, the silicon-on-insulator, and a silicon substrate 3 at the lower side of the silicon-on-insulator. The contact trench is filled, a material 21 for filling the contact trench forms a contact to the silicon substrate 3, and grounds the substrate 3, thus solving the problem of the accumulation of static charge in the substrate 3.
Abstract:
A stressor layer used in a controlled spalling method is removed through the use of a cleave layer that can be fractured or dissolved. The cleave layer is formed between a host semiconductor substrate and the metal stressor layer. A controlled spalling process separates a relatively thin residual host substrate layer from the host substrate. Following attachment of a handle substrate to the residual substrate layer or other layers subsequently formed thereon, the cleave layer is dissolved or otherwise compromised to facilitate removal of the stressor layer. Such removal allows the fabrication of a bifacial solar cell.
Abstract:
Disclosed is a method and system of forming an integrated circuit transistor having a reduced gate height. The method forms a laminated structure having a substrate, a gate conductor (13) above the substrate, and at least one sacrificial layer (14-16) above the gate conductor (13). The process patterns the laminated structure into at least one gate stack extending from the substrate, forms spacers (60) adjacent to the gate stack, dopes regions of the substrate not protected by the spacers to form source and drain regions (71) adjacent the gate stack, and removes the spacers (60) and the sacrificial layer (14-16).
Abstract:
Integrated circuit multilayer integration techniques are provided. In one aspect, a method of fabricating an integrated circuit is provided. The method includes the following steps. A substrate is provided. A plurality of interconnect layers are formed on the substrate arranged in a stack, each interconnect layer comprising one or more metal lines, wherein the metal lines in a given one of the interconnect layers are larger than the metal lines in the interconnect layers, if present, above the given interconnect layer in the stack and wherein the metal lines in the given interconnect layer are smaller than the metal lines in the interconnect layers, if present, below the given interconnect layer in the stack. At least one transistor is formed on a top-most layer of the stack.
Abstract:
An ultra thin SOl MOSFET device structure and method of fabrication is presented. The device has a terminal (20) composed o suicide, which terminal is forming a Schottky contact with the channel (30). A plurality of impurities (70) are segregated on the silicide/channel interface (60), and these segregated impurities determine the resistance of the Schottky contact. Such impurity segregation is achieved by a so called silicidation induced impurity segregation process. Silicon substitutional impurities are appropriate for accomplishing such a segregation.
Abstract:
Übergangs-Feldeffekttransistor (JFET) mit einem Gate-Bereich, der zwei separate Sub-Bereiche, die ein Material mit unterschiedlichen Leitfähigkeitstypen aufweisen, und/oder einen Schottky-Übergang beinhaltet, der einen Gate-Strom im Wesentlichen unterdrückt, wenn der Gate-Übergang in Vorwärtsrichtung vorgespannt ist, ebenso wie Komplementär-Schaltkreise, die derartige JFET-Einheiten umfassen.
Abstract:
A wide band gap semiconductor buffer layer is incorporated between the channel and an insulating support layer. The conduction band offset of the buffer layer with the channel layer is sufficiently large to confine electron carriers within the channel. The buffer layer also reduces the presence of interface traps, which cause degradation of charge carriers in the channel, caused by the presence of the insulating material. The conduction band offset between the channel layer and the wide bandgap material is between 0.05 eV and 0.8 eV. The channel layer can be comprised of InGaAs or InGaSb with varying compositions of indium and gallium. The wide bandgap material can be comprised of InAlAs AlGaAs or InGaP with varying compositions of indium, aluminium or gallium. The wide bandgap material may comprise an embedded silicon delta-doped layer which provides electrons to the channel layer.
Abstract:
Es wird eine Mehrfachübergang-III-V-Photovoltaikeinheit bereitgestellt, die wenigstens eine obere Zelle, die aus wenigstens einem III-V-Verbindungs-Halbleitermaterial besteht und eine untere Zelle in Kontakt mit einer Oberfläche der wenigstens einen oberen Zelle aufweist. Die untere Zelle weist eine Germanium-enthaltende Schicht in Kontakt mit der wenigstens einen oberen Zelle, wenigstens eine intrinsische hydrierte Silicium-enthaltende Schicht in Kontakt mit einer Oberfläche der Germanium-enthaltenden Schicht und wenigstens eine dotierte hydrierte Silicium-enthaltende Schicht in Kontakt mit einer Oberfläche der wenigstens einen intrinsischen hydrierten Silicium-enthaltenden Schicht auf. Die intrinsischen und dotierten Silicium-enthaltenden Schichten können amorph, nano/mikrokristallin, polykristallin oder einkristallin sein.
Abstract:
Ein Epitaxieverfahren umfasst das Bereitstellen (402) einer frei liegenden kristallinen Zone eines Substratmaterials. Silicium wird in einem Niedertemperaturverfahren epitaxial auf dem Substratmaterial abgeschieden (404), wobei eine Abscheidungstemperatur weniger als 500°C beträgt. Ein Quellengas wird mit einem Verdünnungsgas mit einem Gasverhältnis des Verdünnungsgases zum Quellengas von weniger als 1.000 verdünnt (408).
Abstract:
A high-performance semiconductor structure and a method of fabricating such a structure are provided. The semiconductor structure includes at least one gate stack, e.g., FET, located on an upper surface of a semiconductor substrate. The structure further includes a first epitaxy semiconductor material that induces a strain upon a channel of the at least one gate stack. The first epitaxy semiconductor material is located at a footprint of the at least one gate stack substantially within a pair of recessed regions in the substrate which are present on opposite sides of the at least one gate stack. A diffused extension region is located within an upper surface of said first epitaxy semiconductor material in each of the recessed regions. The structure further includes a second epitaxy semiconductor material located on an upper surface of the diffused extension region. The second epitaxy semiconductor material has a higher dopant concentration than the first epitaxy semiconductor material.