Abstract:
An electromagnet and related ion implanter system including active field containment are disclosed. The electromagnet provides a dipole magnetic field within a tall, large gap with minimum distortion and degradation of strength. In one embodiment, an electromagnet for modifying an ion beam includes: a ferromagnetic box structure including six sides; an opening in each of a first side and a second opposing side of the ferromagnetic box structure for passage of the ion beam therethrough; and a plurality of current-carrying wires having a path along an inner surface of the ferromagnetic box structure, the inner surface including the first side and the second opposing side and third side and a fourth opposing side, wherein the plurality of current-carrying wires are positioned to pass around each of the openings of the first and second opposing sides.
Abstract:
An aberration-correcting microscopy instrument is provided. It has a first magnetic deflector (206) disposed for reception of a first non-dispersed electron diffraction pattern. The first magnetic deflector is also configured for projection of a first energy dispersed electron diffraction pattern in an exit plane (A2) of the first magnetic deflector. An electrostatic lens (224) is disposed in the exit plane of the first magnetic deflector. A second magnetic deflector (222) substantially identical to the first magnetic deflector is disposed for reception of the first energy dispersed electron diffraction pattern from the electrostatic lens. The second magnetic deflector is also configured for projection of a second non-dispersed electron diffraction pattern in a first exit plane (B2) of the second magnetic deflector. An electron mirror (226) is configured for correction of one or more aberrations in the second non-dispersed electron diffraction pattern. The electron mirror is disposed for reflection of the second non-dispersed electron diffraction pattern to the second magnetic deflector for projection of a second energy dispersed electron diffraction pattern in a second exit plane (B3) of the second magnetic deflector.
Abstract:
Ion implantation systems and beamline assemblies therefor are provided, in which multi-cusped magnetic fields are provided in a beamguide and the beamguide is energized to provide microwave electric fields in a traveling wave along the beamguide passageway. The magnetic and electric fields interact to provide an electron-cyclotron resonance condition for beam containment in the beamguide passageway.
Abstract:
A mass analyzer for a ribbon shaped ion beam is disclosed. The mass analyzer comprises a pair of coils that define an entrance end and an exit end of the analyzer. Field clamps are employed at or proximate to one or more of the entrance and exit ends of the mass analyzer. The field clamps operate to terminate fringing fields close to the entrance and exit ends of the mass analyzer, thereby reducing the impact of such fringing fields on the ribbon beam and improving beam uniformity.
Abstract:
A magnetic deflector for an ion beam is disclosed and comprises first and second coils. The coils are positioned above and below the beam, respectively, and extend along a width of the beam. Current passes through the coils to generate a magnetic field therebetween that is generally perpendicular to a direction of travel of the beam along substantially the entire width thereof. In another aspect of the invention, a method of deflecting a beam prior to implantation into a workpiece is disclosed. The method includes determining one or more properties associated with the beam and selectively activating one of a magnetic deflection module and an electrostatic deflection module based on the determination.
Abstract:
The invention concerns an energy filter receiving an electronic beam (72) oriented along an optical axis (5). The filter comprises a deflecting system (30) which deviates in a dispersion plane not including the optical axis (5) the received beam (72) and a dispersing system (40) which guides the beam sent by the deflecting system on an optical path (80) inscribed in the dispersion plane and returning to the deflecting system. The deflecting system brings back in alignment with the optical axis the beam coming from the dispersing system. The deflecting system consists of a single element ensuring the inverse deviations of the beam whether outgoing or incoming. The invention is useful for transmission electron microscope.
Abstract:
An energy filtering system of an EFTEM is automatically adjusted using a computer. The computer inserts an energy-selecting slit into the beam path and begins monitoring the position of the electron beam through a combination of the current sensors integral to the slit and the readout of an electron camera. The beam is centered within the slit by adjusting an energy dispersing element while monitoring beam sensors. After initial alignment, the slit is retracted and a reference aperture is inserted at the entrance to the energy filter. The electron camera captures an image of the reference aperture and the computer analyzes the deviations of the aperture image from its known physical dimensions in order to evaluate the electron optical distortions and aberrations of the filter. The computer uses the determined optical parameters to adjust the distortion and aberration correcting optical elements of the filter, whose effects are known due to previous calibration. After correcting the imaging aberrations, the reference aperture is withdrawn, the slit reinserted, and an isochromatic surface of the filter at the plane of the slit is measured by scanning the beam across a slit edge while integrating the transmitted beam intensity on the electron camera. The isochromatic surface thus collected by the electron camera is analyzed by the computer to extract additional aberration coefficients of the filter system. These measured aberration coefficients are used to make calibrated corrections to the filter optics.
Abstract:
A low pass filter for use in an image band pass filter of a photoelectron spectromicroscope incorporating a virtual potential surface for reflecting electrons below a particular energy and a special charged particle trap or super dump for unwanted electrons. The filter construction with the super dump reduces the proportion of elastically and inelastically scattered high energy electron escaping the filter.
Abstract:
A device for energy filtering an imaging beam of charged particles is described particularly for use in an image band pass filter operating in a photoelectron spectromicroscope. Such image band pass filters employ crossed electrostatic and magnetic fields to deflect the beam between electron energy filters (4-8) thereby to produce a final beam (I2) containing electrons of selected energy. Penetration of the apertures (10, 11, 15) of the energy filters by the electrostatic field of the cross field produces undesirable rotation of imaging beam of electrons being filtered. Rotation is caused by the effect of radial electrostatic field components of the penetrating field, and the present invention provides means to compensate or oppose such radial field components and prevent rotation in the aperture of the filters. Such means is provided preferably by the incorporation of a cone shaped electrode (17) within the housing of one or more of the filters which defines each of their apertures, with the apex of the electrode facing the oncoming electrons.