Abstract:
A gold pattern formation method using the gold electron-beam resist is provided to form the gold pattern of nano scale using the electron beam writer. A gold pattern formation method using the gold electron-beam resist includes the step for synthesizing the gold electron-beam resist(200); the step for forming the gold electron beam resist film by coating the synthesized gold electron-beam resist on the top of the substrate(220); the step for forming the gold electron beam resist pattern by patterning the gold electron beam resist film using the electron beam writer(260); the step for changing the gold pattern into the gold electron beam resist pattern by applying the thermal treatment to the gold electron beam resist pattern.
Abstract:
A method of massproducing oxide-based nanostructure is provided to obtain oxide type nanostructure having uniform electrical characteristics and homogeneous composition in a simple process and to prevent the problems involved with the crystallographic discordance between the nanostructure and substrate by chemical wet-process and physical dry-process. A method of massproducing oxide-based nanostructure comprises steps of: preparing a first organic solution containing metal(S10); mixing the first solution with a second organic solution containing hydroxylic group(S20); stirring the mixture solution(S30); standing the mixture solution(S40); filtering the mixture solution in order to collect the formed oxide-based nanostructure from the mixture solution(S50); drying the collected oxide-based nanostructure in order to remove the remaining organic solution(S60); and subjecting the dried oxide-based nanostructure to heat-treatment(S70). The metal contains an element selected from a group consisting of Sc, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd Ag, Cd, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, lanthanide, actinoid, Si, Ge, Sn, As, Sb, Bi, Ga and In. The second organic solution contains one selected from a group consisting of methanol, ethanol, ethylene glycol, glycerol, propanol, butanol, phenol, catechol, cresol, pyrogallol and naphthol.
Abstract:
A gas sensor using zinc oxide and a manufacturing method thereof are provided to detect gas with high sensitivity and apply relatively high detecting temperature during gas sensing. A gas sensor using zinc oxide includes a substrate(12), a nano zinc oxide structure(14), a plurality of metal islands, a first electrode(22), a second electrode(24), and a current change detector(50). The nano zinc oxide structure is formed on the substrate. The metal islands are coated on the nano structure, separated from each other. The first electrode is electrically connected to an end of the nano structure. The second electrode is electrically connected to the other end of the nano structure. The current change detector is connected to the first electrode and the second electrode for detecting changes of current flowing through the first electrode and the second electrode.
Abstract:
전지가 폭발하는 것을 지연시키거나 방지할 수 있는 전하방전수단을 구비하는 리튬 2차전지에 대해 개시한다. 그 리튬 2차전지는 전지 본체와 병렬적으로 배치된 전하방전수단을 구비하며, 상기 전하방전수단은 리튬 2차전지 본체의 양극에 연결된 제1 전극과, 리튬 2차전지 본체의 음극에 연결된 제2 전극 및 제1 전극과 상기 제2 전극 사이에 형성되며, 특정 온도 이상에서 급격한 전하방전을 일으키는 전하방전물질층을 포함한다. 전하방전수단을 구비한 리튬 2차전지는 급격한 전하방전을 일으키는 전하방전물질층, 예컨대 급격한 MIT 물질막을 사용하여 충전된 전하량을 갑자기 방전시켜서 전지의 폭발을 방지하거나 지연시킬 수 있다. 리튬 2차전지, 전하방전수단, 급격한 MIT 물질막
Abstract:
본 발명의 급격한 금속-절연체 전이 반도체물질을 이용한 2단자 반도체 소자는, 제1 전극막과, 제1 전극막 위에 배치되는 2eV 이하의 에너지 갭과 정공 준위내의 정공을 갖는 급격한 금속-절연체 전이 반도체 물질막과, 그리고 급격한 금속-절연체 전이 반도체 물질막 위에 배치되는 제2 전극막을 구비한다. 이에 따르면 제1 전극막 및 제2 전극막 사이에 인가되는 전계에 의해 상기 급격한 금속-절연체 전이 반도체 물질막에서는 구조적 상전이가 아닌 정공 도핑에 의한 급격한 금속-절연체 전이가 발생한다. 금속-절연체 전이, 반도체 소자, 온도센서, 광전센서, 메모리 소자
Abstract:
본 발명은 340 K(68 ℃) 부근에서 절연체로부터 금속으로의 상전이(Metal-Insulator Transition: MIT) 특성을 가지는 VO 2 (Vanadium Dioxide) 박막을 채널 층 재료로 이용한 금속-절연체 상전이 스위칭 소자 제작에 관한 것이다. 이 트랜지스터는 실리콘 기판, 실리콘 기판위에 위치하는 바닥 게이트 방식의 게이트, 게이트 위에 위치하며 일정 전압 인가에 의하여 정공(hole)을 VO 2 박막에 유기시키고 열적으로 안정한 특성을 가지는 게이트 절연막, 게이트 절연막 위에 위치한 VO 2 채널 층, 및 VO 2 채널 층 좌우에 전기적으로 연결된 소스(Source) 및 드레인(Drain)을 포함하고 있다. 그리고, 게이트에 높은 전압을 인가할 경우에 소자 내부에서 발생되는 열에 의하여 소자 특성이 저하되는 것을 방지함으로써, 큰 전류 이득을 얻을 수 있도록 설계된 것이 특징이다. 그리고 상기 구성을 갖는 제작된 트랜지스터의 IV 특성 측정에서 높은 전류 이득이 최초로 관측 되었다. VO2 채널 층, 모트(mott) 전계효과 트랜지스터, 고 전류 이득형 트랜지스터, 열전도
Abstract:
본 발명은 340 K(68 ℃) 부근에서 절연체로부터 금속으로의 상전이(Metal-Insulator Transition: MIT) 특성을 가지는 VO 2 (Vanadium Dioxide) 박막을 채널 층 재료로 이용한 금속-절연체 상전이 스위칭 소자 제작에 관한 것이다. 이 트랜지스터는 실리콘 기판, 실리콘 기판위에 위치하는 바닥 게이트 방식의 게이트, 게이트 위에 위치하며 일정 전압 인가에 의하여 정공(hole)을 VO 2 박막에 유기시키고 열적으로 안정한 특성을 가지는 게이트 절연막, 게이트 절연막 위에 위치한 VO 2 채널 층, 및 VO 2 채널 층 좌우에 전기적으로 연결된 소스(Source) 및 드레인(Drain)을 포함하고 있다. 그리고, 게이트에 높은 전압을 인가할 경우에 소자 내부에서 발생되는 열에 의하여 소자 특성이 저하되는 것을 방지함으로써, 큰 전류 이득을 얻을 수 있도록 설계된 것이 특징이다. 그리고 상기 구성을 갖는 제작된 트랜지스터의 IV 특성 측정에서 높은 전류 이득이 최초로 관측 되었다.
Abstract:
A method for selectively depositing a metal oxide nano material and a gas sensor using the same are provided to improve crystallization through a rapid thermal process by using a micro heater and to remove the moisture attached on the surface of a nano line. A substrate removing a central region is provided. A membrane(20) is formed in an upper part of the substrate. A micro-heater electrode(40) is formed in the upper part of the membrane of the central region. An insulating layer(30) covering the micro heater is formed in the upper part of the membrane. A sensing electrode(50) is formed in the upper part of the insulating layer of the micro heater electrode part. The metal oxide nano material is deposited in an upper part of the sensing electrode.
Abstract:
이산화티탄이 균일하게 코팅된 탄소나노튜브를 제공한다. 본 발명에서는 탄소나노튜브를 친수성기로 기능화시키는 단계; 상기 친수성으로 기능화된 탄소나노튜브를 이산화티탄 전구체를 포함하는 용액에 혼합하는 단계; 상기 탄소나노튜브와 상기 이산화티탄 전구체의 혼합 용액으로부터 이산화티탄 전구체가 코팅된 탄소나노튜브를 정제하는 단계; 및 상기 정제된 이산화티탄 전구체가 코팅된 탄소나노튜브을 열처리하는 단계; 를 포함한다. 이와 같이 형성된 이산화티탄이 균일하게 코팅된 탄소나노튜브는 탄소나노튜브와 이산화티탄 나노와이어의 특성을 동시에 보유함으로, 태양전지, 전계방출 디스플레이 소자, 가스센서, 광촉매 등으로 사용할 수 있다. 이산화티탄, 탄소나노튜브, 이산화티탄이 코팅된 탄소나노튜브
Abstract:
A nanostructures composite is provided to have excellent high efficiency field emission factor at low temperature and room pressure and realize excellent high efficiency field emission factor. A nanostructures composite includes a substrate(110), the first layer(120) formed on the substrate and made of a carbon nano structure and the second layer formed on the first layer and made of a nanostructures(130) of metal oxide. A nanostructure of the metal oxide is nanowire. The catalyst metal(140) is formed in end side of the nanowire of the metal oxide. The substrate is made of silicon, gallium nitride or sapphire.