Abstract:
An apparatus and method for mapping film thickness of one or more textured polycrystalline thin films. Multiple sample films of known thickness are provided. Each sample film is irradiated by x-ray at a measurement point to generate a diffraction image that captures a plurality of diffraction arcs. Texture information (i.e., pole densities) of the sample film is calculated based on incomplete pole figures collected on the diffraction image and used to correct the x-ray diffraction intensities from such sample. The corrected diffraction intensities are integrated for each sample film, and then used for constructing a calibration curve that correlates diffraction intensities with respective known film thickness of the sample films. The film thickness of a textured polycrystalline thin film of unknown thickness can therefore be mapped on such calibration curve, using a corrected and integrated diffraction intensity obtained for such thin film of unknown thickness.
Abstract:
A polishing pad having a body comprising fibers embedded in a matrix polymer formed by a reaction of polymer precursors. The fibers define interstices, and the precursors fill these interstices substantially completely before completion of the reaction. The pad may include a thin layer of free fibers at its polishing surface. A segment of at least a portion of the free fibers are embedded in the adjacent body of the polymer and fibers. The fibers may be separate, or in the form of a woven or non-woven web.
Abstract:
Grooves (70, 76, 78, & 80-82) are formed in a CMP pad (12) by positionin g the pad (12) on a supporting surface (10) with a working surface (22) of the pad (12) in spaced relation opposite to a router bit (24) and at least one projecting stop member (33) adjacent to the router bit (24), an outer end portion of the bit (24) projecting beyond the stop (33). When the bit (24) i s rotated, relative axial movement between the bit (24) and the pad (12) cause s the outer end portion of the bit (24) to cut an initial recess in the pad (12). Relative lateral movement between the rotating bit (24) and the pad (1 2) then forms a groove (70) which extends laterally away from the recess and ha s a depth substantially the same as that of the recess. The depths of the initial recess and the groove (70) are limited by applying a vacuum to the working surface (22) of the pad (12) to keep it in contact with the stop member(s) (33). Different lateral movements between the bit (24) and the pad (12) are used to form a variety of groove patterns (76, 78, & 80-82), th e depths of which are precisely controlled by the stop member(s) (33).
Abstract:
Disclosed is a method of chem-mech polishing an electronic component substrate. The method includes the following steps; obtaining a substrate having at least two features thereon or therein which have a different etch rate with respect to a particular etchant; and contacting the substrate with a polishing pad while contacting the substrate with a slurry containing the etchant wherein the slurry includes abrasive particles, a transition metal chelated salt and a solvent for the salt. The chem-mech polishing causes the at least two features to be substantially coplanar. Also disclosed is the chem-mech polishing slurry.
Abstract:
A sputtered low copper concentration multilayered device interconnect metallurgy structure is disclosed herein. The interconnect metallurgy is seen to comprise a four-layer structure over an interplanar stud connection (10) surrounded by an insulator (8) to make connection to a device substrate (6). The four-layer structure consists of an intermetallic bottom layer (12 min ) typically 700 ANGSTROM thick and, in a preferred embodiment would comprise TiAl3. Above is a low percent (
Abstract:
Eine Metallverbindungsstruktur und ein Verfahren zur Herstellung der Metallverbindungsstruktur. Mangan (Mn) wird in eine Kupfer(Cu)-Verbindungsstruktur eingebaut, um die Mikrostruktur zu modifizieren, um Bambusstil-Korngrenzen in Sub-90-nm-Technologien zu erreichen. Vorzugsweise sind die Bambuskörner durch Abstände von weniger als der „Blech”-Länge getrennt, so dass eine Kupfer(Cu)-Diffusion durch Korngrenzen vermieden wird. Das hinzugefügte Mn löst auch das Wachstum von Cu-Körnern herunter bis zu der unteren Fläche der Metallleitung aus, so dass eine echte Bambusmikrostruktur gebildet wird, welche bis zu der unteren Fläche reicht, und der Cu-Diffusionsmechanismus entlang Korngrenzen, die entlang der Länge der Metallleitung orientiert sind, eliminiert wird.
Abstract:
Ein Verfahren zum Bilden einer Halbleitereinheit umfasst das Bilden einer Implantationsmaske auf einem Substrat, so dass sich ein erster Abschnitt des Substrats unter der Implantationsmaske befindet und ein zweiter Abschnitt frei liegt; das Durchführen einer Sauerstoffionenimplantation an dem Substrat; das Entfernen der Implantationsmaske; und das Bilden eines ersten Feldeffekttransistors (FET) auf dem ersten Abschnitt des Substrats und das Bilden eines zweiten FET auf dem zweiten Abschnitt des Substrats, wobei der zweite FET eine höhere Strahlungsempfindlichkeit als der erste FET aufweist.
Abstract:
Grooves are formed in a COD pad by positioning the pad on a supporting surface with a working surface of the pad in spaced relation opposite to a router bit and at least one projecting stop member adjacent to the router bit, an outer end portion of the bit projecting beyond the stop. When the bit is rotated, relative axial movement between the bit and the pad causes the outer end portion of the bit to cut an initial recess in the pad. Relative lateral movement between the rotating bit and the pad then forms a groove which extends laterally away from the recess and has a depth substantially the same as that of the recess. The depths of the initial recess and the groove are limited by applying a vacuum to the working surface of the pad to keep it in contact with the stop member(s). Different lateral movements between the bit and the pad are used to form a variety of groove patterns, the depths of which are precisely controlled by the stop member(s).
Abstract:
Integrierter Strahlungssensor (20; 60; 100; 120; 200; 260), der aufweist:eine Messstruktur;einen ersten lateralen Bipolartransistor (30; 62; 62; 122; 211; 264) mit einer Basis (33; 74; 74; 130; 213; 286), die mit der Messstruktur elektrisch gekoppelt ist, wobei der erste laterale Bipolartransistor so konfiguriert ist, dass er ein Ausgangssignal erzeugt, das indikativ für eine Änderung einer gespeicherten Ladung in der Messstruktur ist, die aus dem Vorhandensein einer Umgebungseigenschaft resultiert;einen zweiten lateralen Bipolartransistor (24; 64; 102; 124; 201; 262), der benachbart zu dem ersten lateralen Bipolartransistor und mit diesem elektrisch verbunden ist, wobei der zweite laterale Bipolartransistor so konfiguriert ist, dass er das Ausgangssignal des ersten lateralen Bipolartransistors verstärkt, wobei der erste laterale Bipolartransistor und der zweite laterale Bipolartransistor entgegengesetzte Polaritäten aufweisen, undein Substrat, wobei der erste laterale Bipolartransistor, der zweite laterale Bipolartransistor und das Substrat eine monolithische Struktur bilden.