Abstract:
The invention relates to a semiconductor chip, especially a light-emitting diode, having a substrate (2) on which a semiconductor layer sequence (3) with an active zone (5) is applied. A graded, Fresnel lens-like structured window layer (6) is located above the semiconductor layer sequence (3), which functions as a semicircular lens (7) with regard to radiation decoupling, resulting in a semiconductor chip with a particularly high decoupling efficiency.
Abstract:
The invention relates to an optoelectronic component (1) comprising a connection support (2), on which at least two radiation-emitting semiconductor chips (3) are located and a conversion element (4) that is fixed to the connection support (2), said conversion element (4) spanning the semiconductor chips (3) in such a way that the chips (3) are surrounded by the conversion element (4) and the connection support (2). At least two of the radiation-emitting semiconductor chips (3) differ from one another with respect to the wavelengths of the electromagnetic radiation that they emit during operation.
Abstract:
The invention relates to a semiconductor component emitting polarized radiation with a first polarization direction. The semiconductor component comprises a chip housing, a semiconductor chip and a chip-remote polarization filter.
Abstract:
The invention relates to a luminescent diode (1) comprising an active area (7) which emits electromagnetic radiation in the direction of the main radiation (15). The active area (7) in the direction of the main radiation (15) is arranged downstream from a reflection-reducing layer sequence (16). Said reflection-reducing layer sequence contains a DBR mirror which is formed from at least one pair of layers (11, 12), a reflection coating (9) which is arranged downstream from the DBR-mirror (13) in the direction of the main radiation (15) and an intermediate layer (14) which is arranged between the DBR-mirror (13) and the reflection coating (9).
Abstract:
The invention specifies a light-emitting diode arrangement, with a piezoelectric transformer (1) which has at least one output-side connection point (11), and with a high-voltage light-emitting diode (2), which comprises a high-voltage light-emitting diode chip (21), wherein the high-voltage light-emitting diode (2) is connected electrically to the output-side connection point (11) of the piezoelectric transformer (1), and the high-voltage light-emitting diode chip (21) comprises at least two active regions which are connected in series with one another.
Abstract:
The invention relates to an optoelectronic device for radiating mixed light in a first wavelength range and a second wavelength range different from the first wavelength range, comprising a first or second semiconductor light source (1, 2) having a first or second light-emitting diode (11, 21), which radiates light having a first or second characteristic wavelength in the first or second wavelength range and having a first or second intensity when a first or second current (41, 42) is applied, an optical sensor (3) for converting a part (110, 510) of the respective radiated light from the semiconductor light sources (1, 2) into a first or second sensor signal (341, 342), and a control device (4) for controlling the first and second currents (41, 42) according to the first and second sensor signals (341, 342), wherein the characteristic wavelengths and intensities of the respective light radiated by the first and second semiconductor light sources (1, 2) have a first temperature- and/or current- and/or aging-dependence or second temperature- and/or current- and/or aging dependence (931, 932, 941, 942) different from the first temperature- and/or current- and/or aging-dependence, the optical sensor (3) has a first or second wavelength-dependent sensitivity in the first or second wavelength range, wherein said first and second wavelength-dependent sensitivities are adapted to the first and second temperature dependences (931, 932, 941, 942), and the control device (4) controls the first and second currents (41, 42) in such a way that there is a predetermined ratio of the first to the second sensor signal (341, 342).
Abstract:
The invention relates to an optoelectronic component having the following features: - at least one semiconductor body (1) provided for emitting electromagnetic radiation of a first wavelength range, - a heat sink (2) on which the semiconductor body (1) and a mirror (3) are disposed, and - a wavelength-converting layer (4) disposed to the side of the semiconductor body (1) on the mirror (3), said layer comprising a wavelength-conversion material (8) that is suitable to convert at least a portion of the radiation of the first wavelength range emitted by the semiconductor body (1) into radiation of a second wavelength range different from the first wavelength range. The invention further relates to a decoupling lens (14) for an optoelectronic component.
Abstract:
The invention relates to an optoelectronic semiconductor chip which emits electromagnetic radiation from its front side (7), comprising: a semiconductor layered construction (1) with an active region (4) suited for generating electromagnetic radiation, and; a separately made TCO supporting substrate (10), which is placed on the semiconductor layered construction, has a material from the group of transparent conducting oxides (TCO) and which mechanically supports the semiconductor layered construction (1).
Abstract:
Ein optoelektronisches Bauelement weist einen Trägerkörper (3) mit einem Anschlussbereich (5) auf. Auf dem Trägerkörper (3) ist ein Halbleiterchip (7) angeordnet. Auf der vom Trägerkörper (3) abgewandten Oberfläche (8) des Halbleiterchips (7) ist ein Kontaktbereich (10) aufgebracht. Der Anschlussbereich (5) ist mit dem Kontaktbereich (10) über eine freitragende Leitungsstruktur (13) elektrisch leitend verbunden. Es wird ein Verfahren zum Herstellen eines optoelektronischen Bauelements beschrieben.
Abstract:
Es ist ein optoelektronisches Bauelement (10) vorgesehen, dass zumindest einen Halbleiterkörper (2) mit einer Strahlungsaustrittsseite (20) aufweist. Der Halbleiterkörper (2) ist mit einer der Strahlungsaustrittsseite (20) gegenüberliegenden Seite auf einem Substrat (1) angeordnet, wobei auf der Strahlungsaustrittsseite (20) zumindest ein elektrischer Anschlussbereich (22) angeordnet ist. Auf dem elektrischen Anschlussbereich (22) ist ein Metallisierungshügel (3) angeordnet. Ferner ist der Halbleiterkörper (2) zumindest teilweise mit einer Ioslationsschicht (4) versehen, wobei der Metallisierungshügel (3) die Isolationsschicht (4) überragt. Auf der Isolationsschicht (4) ist zur planaren Kontaktierung des Halbleiterkörpers (2) zumindest eine planare Leitstruktur (5) angeordnet, die mit dem elektrischen Anschlussbereich (22) über den Metallisierungshügel (3) elektrisch leitend verbunden ist. Weiter ist ein Verfahren zur Herstellung eines derartigen optoelektronischen Bauelements (10) vorgesehen.