Abstract:
A chemical-mechanical polishing (CMP) composition is provided comprising (A) one or more compounds selected from the group of benzotriazole derivatives which act as corrosion inhibitors and (B) inorganic particles, organic particles, or a composite or mixture thereof. The invention also relates to the use of certain compounds selected from the group of benzotriazole derivatives as corrosion inhibitors, especially for increasing the selectivity of a chemical mechanical polishing (CMP) composition for the removal of tantalum or tantalum nitride from a substrate for the manufacture of a semiconductor device in the presence of copper on said substrate.
Abstract:
23 Abstract A CHEMICAL MECHANICAL POLISHING (CMP) COMPOSITION COMPRISING INORGANIC PARTICLES AND POLYMER PARTICLES A chemical mechanical polishing (CMP) composition, comprising (A) at least one type of inorganic particles which are dispersed in the liquid medium (C), (B) at least one type of polymer particles which are dispersed in the liquid medium (C), (C) a liquid medium, wherein the zeta-potential of the inorganic particles (A) in the liquid medium (C) and the zeta-potential of the polymer particles in the liquid medium (C) are of same signs. No Figure
Abstract:
An aqueous polishing composition comprising (A) abrasive particles which are positively charged when dispersed in an aqueous medium having a pH in the range of from 3 to 9 as evidenced by the electrophoretic mobility; (B) water-soluble and water-dispersible hydroxy group containing components selected from (b1 ) aliphatic and cycloaliphatic hydroxycarboxylic acids, wherein the molar ratio of hydroxy groups to carboxylic acid groups is at least 1; (b2) esters and lactones of the hydroxycarboxylic acids (b1 ) having at least one hydroxy group; and (b3) mixtures thereof; and (C) water-soluble and water-dispersible polymer components selected from (c1 ) linear and branched alkylene oxide polymers; (c2) linear and branched, aliphatic and cycloaliphatic poly(N-vinylamide) polymers; and (c3) cationic polymeric flocculants having a weight average molecular weight of less than 100,000 Dalton.; and a process for polishing substrate materials for electrical, mechanical and optical devices.
Abstract:
An aqueous polishing composition comprising (A) at least one water-soluble or water-dispersible compound selected from the group consisting of N-substituted diazenium dioxides and N'-hydroxy-diazenium oxide salts; and (B) at least one type of abrasive particles; the use of the compounds (A) for manufacturing electrical, mechanical and optical devices and a process for polishing substrate materials for electrical, mechanical and optical devices making use of the aqueous polishing composition.
Abstract:
An aqueous polishing composition having a pH of 3 to 11 and comprising (A) abrasive particles which are positively charged when dispersed in an aqueous medium free from component (B) and of a pH of 3 to 9 as evidenced by the electrophoretic mobility; (B) anionic phosphate dispersing agents; and (C) a polyhydric alcohol component selected from the group consisting of (c1) water-soluble and water-dispersible, aliphatic and cycloaliphatic, monomeric, dimeric and oligomeric polyols having at least 4 hydroxy groups; (c2) a mixture consisting of (c21) water-soluble and water-dispersible, aliphatic and cycloaliphatic polyols having at least 2 hydroxy groups; and (c22) water-soluble or water-dispersible polymers selected from linear and branched alkylene oxide homopolymers and copolymers (c221 ); and linear and branched, aliphatic and cycloaliphatic poly(N-vinylamide) homopolymers and copolymers (c222); and (c3) mixtures of (c1) and (c2); and a process for polishing substrates for electrical, mechanical and optical devices.
Abstract:
Abrasive articles containing solid abrasive particles (A) selected from the group consisting of inorganic particles, organic particles and inorganic-organic hybrid particles (a1) having an average primary particle size of from 1 to 500 nm as determined by laser light diffraction and having electron donor groups (a2) chemically bonded to their surface are provided. The said solid abrasive particles (A) are distributed throughout or on top of or throughout and on top of a solid matrix (B). A method for manufacturing abrasive articles and a method for processing substrates useful for fabricating electrical and optical devices are provided. The said methods make use of the said abrasive articles.
Abstract:
A chemical mechanical polishing (CMP) composition comprising: (A) inorganic particles, organic particles, or a mixture or composite thereof, (B) at least one type of an organic polymeric compound as a dispersing agent or charge reversal agent comprising a phosphonate (P(═O)(OR1)(OR2) or phosphonic acid (P(═O)(OH)2) moiety or their deprotonated forms as pendant groups, wherein R1 is alkyl, aryl, alkylaryl, or arylalkyl, R2 is H, alkyl, aryl, alkylaryl, or arylalkyl, and (C) an aqueous medium.
Abstract:
A post chemical-mechanical-polishing (post-CMP) cleaning composition comprising: (A) is cysteine, glutathione, N-acetylcysteine, thiourea, (L) at least one oligomeric or polymeric polycarboxylic acid, and (C) water, wherein the post-CMP cleaning composition has a pH-value in the range of from 4 to not more than 7. The use of the composition for removing residues and contaminants from the surface of semiconductor substrates useful for manufacturing microelectronic devices. A process for manufacturing microelectronic devices from semiconductor substrates comprising the step of removing residues and contaminants from the surface of the semiconductor substrates by contacting them at least once with the post-CMP cleaning composition.