一种高速铁路牵引供电系统的多工况电能质量分析方法

    公开(公告)号:CN114818552B

    公开(公告)日:2024-10-11

    申请号:CN202210269603.6

    申请日:2022-03-18

    Abstract: 本发明公开了一种高速铁路牵引供电系统的多工况电能质量分析方法,包括步骤1:利用simulink搭建包含电源、牵引变压器、AT所、序分量检测模块、电流观测模块的牵引供电仿真电路;步骤2:设置电源、牵引变压器、AT所、序分量检测模块、电流观测模块的参数,设定上下行断路器状态为开,设定负载阻抗值;步骤3:断路器开:电流经过断路器内部电阻表示空载;断路器合:电流经导线流过负载表示有列车运行;步骤4:开始仿真:得出空载、单列、满载三种牵引供电工况下,不同的三相电流与负序电流值;步骤5:设定上行列车运行时间为3~5周波,下行列车运行时间为6~8周波;步骤6:仿真观察波形,比较不同电压的波形,对电压暂降情况进行观测并分析。

    一种铁路牵引供电系统高频谐振抑制方法及系统

    公开(公告)号:CN117878934A

    公开(公告)日:2024-04-12

    申请号:CN202311632726.2

    申请日:2023-12-01

    Abstract: 本发明公开了一种铁路牵引供电系统高频谐振抑制方法及系统,包括:收集供电系统数据;构建单调谐与C型滤波器并联组合,建立车网耦合的牵引供电系统仿真模型;多工况下,调节单调谐与C型滤波器组合参数,对牵引供电系统进行多工况谐波特性与负序分析;同工况下,利用单调谐与C型滤波器组合对不同列车数量情况进行谐波特性与负序分析,利用滤波器组合进行谐波治理。本发明提供的铁路牵引供电系统高频谐振抑制方法,考虑运行列车数量的情况下,以单调谐与C型滤波器组合的铁路牵引供电系统高频谐振抑制方法都能够有效治理牵引供电系数谐波,降低了总谐波电压畸变率。

    一种基于C型滤波器的动车组多类工况谐波治理方法

    公开(公告)号:CN117096879A

    公开(公告)日:2023-11-21

    申请号:CN202310853393.X

    申请日:2023-07-12

    Abstract: 本发明公开了一种基于C型滤波器的动车组多类工况谐波治理方法,涉及高速铁路电力技术领域,包括:分析牵引供电系统的动车组、牵引网、电网谐波问题;运用PPF谐波治理方案构建C型滤波器;对机车谐波源模型进行仿真;对牵引供电系统模型设置参数,并设计六类机车工况;对牵引供电系统进行多工况谐波特性与负序分析;针对多工况的C型滤波器参数进行实验。本发明提供的基于C型滤波器的动车组多类工况谐波治理方法减少负序电流对牵引供电系统和动车组设备的危害,延长设备的使用寿命,降低维护成本;降低谐波对公用电网和列车电气设备的影响,减少电能损耗,提高电能利用率,节约能源;提高牵引供电系统的供电品质和可靠性,减少供电故障。

    永磁同步电机控制方法
    47.
    发明公开

    公开(公告)号:CN110061670A

    公开(公告)日:2019-07-26

    申请号:CN201910394161.6

    申请日:2019-05-13

    Abstract: 本发明提供的永磁同步电机控制方法,包括将预设的转速与转子跟踪器所得差值,经过滑模速度控制器调节后输出转矩电流,转矩电流与转矩电流反馈量的比较差值经过PI调节器输出电压uq;而励磁电流反馈量的偏差与励磁电流量的比较差值经过电流PI调节器输出电压ud,转矩电压uq与励磁电压ud经Park逆变换得到两相控制电压;将根据两相控制电压后进行SVPWM调制生成PWM调制波。通过PWM调制波控制三相逆变器开关器件通断来获得所需的三相电压,进而控制永磁同步电机。本发明不仅能使滑模控制器的鲁棒性更强,而且几乎不会引起系统的延迟,大大降低了电机控制的延迟时间,更快速响应。

    永磁同步电机转子位置的估算方法及系统

    公开(公告)号:CN108880351A

    公开(公告)日:2018-11-23

    申请号:CN201810703708.1

    申请日:2018-06-28

    Abstract: 本发明提供了一种永磁同步电机转子位置的估算方法及系统,本发明专利在传统滑模观测器存在估计精度不高,鲁棒性较差的问题上,提出一种改进策略,即提出了基于双曲正切函数的改进型滑模观测器来提高永磁同步电机的转子位置的估算精度,本发明的安全系数高又易于工程实现的无速度传感器算法来替代传统的机械传感器,用来获取精确的电机转子位置和转速信息,以减少闭环反馈信息中的误差,使其矢量控制系统控制性能更优,汽车行驶更加安全,实现新能源汽车的无传感器控制,这一改进不仅使得电机系统的过渡时间加快,以有效地提高了转子位置估算精度和系统的鲁棒性。

Patent Agency Ranking