Abstract:
Some embodiments of the present invention provide processes and apparatus for electrochemically fabricating multilayer structures (98) (e.g. mesoscale or microscale structures) with improved endpoint detection and parallelism maintenance for materials (e.g. layers) that are planarized during the electrochemical fabrication process. Some methods involve the use of a fixture during planarization that ensures that planarized planes of material are parallel to other deposited planes within a given tolerance. Some methods involve the use of an endpoint detection fixture (292, 294, 296, 298) that ensures precise heights of deposited materials relative to an initial surface of a substrate (82), relative to a first deposited layer, or relative to some other layer formed during the fabrication process. In some embodiments planarization may occur via lapping while other embodiments may use a diamond fly cutting machine (408).
Abstract:
One example discloses a chip, comprising: a substrate (102, 202, 302, 602, 802); a first side of a passivation layer (206, 604, 804) coupled to the substrate (102, 202, 302, 602, 802); a device, having a device height and a cavity, wherein a first device surface is coupled to a second side of the passivation layer (206, 604, 804) which is opposite to the first side of the passivation layer (206, 604, 804); and a set of structures (108, 110, 214, 306, 410, 502, 504, 612, 614, 702, 812) coupled to the second side of the passivation layer (206, 604, 804) and configured to have a structure height greater than or equal to the device height.
Abstract:
The invention relates to a microfluidic device comprising: a substrate provided with a fluid channel; a plurality of electro osmotic flow drive sections for providing electro osmotic flow in the channel, each drive section comprising electric field electrodes, exposed to the channel, and one or more gate electrodes, separated from the channel by an insulating layer, and control means connected to said electrodes of each drive section so as to control the direction of the electro osmotic flow in the channel.
Abstract:
The invention concerns a micromechanical component comprising a substrate (17) whereon is deposited a micromechanical functional layer (15) made of a first material. The invention is characterized in that the functional layer (15) includes first and second zones (15a, 15c) which are linked by a third zone (15b; 220a,b; 320a,b; 420a-d; 520; 520a-h) made of a second material (20). At least one of the zones (15a or 15b; 220a,b; 320a,b; 420a-d; 520; 520a-h or 15c) forms part of a mobile structure (32) which is suspended above the substrate (17). The invention also concerns a method for producing such a micromechanical component.
Abstract:
The present invention relates to a method of fabricating a microfluidic device including at least two substrates provided with a fluid channel, comprising the steps of:
a) etching at least a channel and one or more fluid ports in a first and/or a second substrate; b) depositing a first layer on a surface of the second substrate; c) partially removing the first layer in accordance with a predefined geometry; d) depositing a second layer on top of the first layer and the substrate surface; e) planarizing the second layer so as to smooth the upper surface thereof; f) aligning the first and second substrate; g) bonding the first substrate on the planarized second layer of the second substrate.
Abstract:
The method of fabrication of a monolithic silicon membrane structure in which the membrane and its supporting framework are constructed from a single ultra thick body of silicon. The fabrication sequence includes the steps of providing a doped membrane layer on the silicon body, forming an apertured mask on the silicon body, and removal of an unwanted silicon region by mechanical grinding and chemical etching to provide a well opening in the silicon body terminating in the doped membrane.
Abstract:
A process for filling one or more etched holes defined in a frontside surface of a wafer substrate. The process includes the steps of: (i) depositing a layer of a photoimageable thermoplastic polymer onto the frontside surface and into each hole; (ii) reflowing the polymer; (iii) selectively removing the polymer from regions outside a periphery of each hole, the selective removing comprising exposure and development of the polymer; (iv) optionally repeating steps (i) to (iii) until each hole is overfilled with the polymer; and (v) planarizing the frontside surface to provide one or more holes filled with a plug of the polymer. Each plug has a respective upper surface coplanar with the frontside surface.
Abstract:
A method for fabrication of diffractive optics by batch processing is disclosed, having applicability to high resolution ultra-high aspect ratio Fresnel Zone Plates for focusing of X-rays or gamma-rays having energies up to hundreds of keV. An array of precursor forms is etched into a planar substrate. Sidewalls of the forms are smoothed to a required surface roughness. A sequence of alternating layers of different complex refractive index, for binary or higher order diffractive optics, are deposited on the precursor forms by atomic layer deposition (ALD), to provide diffractive line patterns. Thinnest layers may have nanometer thicknesses. After front surface planarization and thinning of the substrate to expose first and second surfaces of the diffractive line patterns of the diffractive optic, the height h in the propagation direction provides a designed absorption difference and/or phase shift difference between adjacent diffractive lines. Optionally, post-processing enhances mechanical, thermal, electrical and optical properties.
Abstract:
The present disclosure provides a substrate structure for a micro electro mechanical system (MEMS) device. The substrate structure includes a cap and a micro electro mechanical system (MEMS) substrate. The cap has a cavity, and the MEMS substrate is disposed on the cap. The MEMS substrate has a plurality of through holes exposing the cavity, and an aspect ratio of the through hole is greater than 30.