Abstract:
Ion sources and methods of operating an electromagnet of an ion source for generating an ion beam with a controllable ion current density distribution. The ion source (10) includes a discharge chamber (16) and an electromagnet (42; 42a-d) adapted to generate a magnetic field (75) for changing a plasma density distribution inside the discharge chamber (16). The methods may include generating plasma (17) in the discharge space (24), generating and shaping a magnetic field (75) in the discharge space (24) by applying a current to an electromagnet (42; 42a-d) that is effective to define the plasma density distribution, extracting an ion beam (15) from the plasma (17), measuring a distribution profile for the ion beam density, and comparing the actual distribution profile with a desired distribution profile for the ion beam density. Based upon the comparison, the current applied to the electromagnet (42; 42a-d) may be adjusted to modify magnetic field (75) the magnetic field in the discharge space and, thereby, alter the plasma density distribution.
Abstract:
An electron beam lithographic apparatus has an electron gun (22) providing a beam of accelerated electrons, a mask stage adapted to hold a mask in a path of the beam of accelerated electrons, and a workpiece stage adapted to hold a workpiece in a path of electrons that have traversed the mask. The electron gun (22) has a cathode (42) having an electron emission surface (52), an anode (46) adapted to be connected to a high-voltage power supply (56) to provide an electric field between the cathode and the anode to accelerate electrons emitted from the cathode toward the anode, and a current-density-profile control grid (44) disposed between the anode and the cathode. The current-density-profile control grid is configured to provide an electron gun that produces an electron beam having a non-uniform current density profile (90). A method of producing a micro-device includes generating a beam of charged particles having a non-uniform charged-particle current density, illuminating a mask with the beam of charged particles, and exposing a workpiece with charged particles from the beam of charged particles.
Abstract:
The present invention relates to a particle beam emission image acquisition apparatus which comprises a microchannel plate for receiving a particle beam emitted from a particle beam source and emitting a secondary electron; a fluorescent screen for receiving the secondary electron generated in the microchannel plate and converting the same into an optical signal; an image acquisition device for acquiring optical data emitted from the fluorescent screen; and an image process device for comprising a slow frequency pass filter of a spatial region and treating and imaging data obtained from the image acquisition device, and to a method for acquiring a particle beam emission image using the same.
Abstract:
Die Erfindung betrifft eine Vorrichtung zur Extraktion von elektrischen Ladungsträgern aus einem Ladungsträgererzeugungsraum mit mindestens einer Elektrodenanordnung 1a zur Extraktion von Ladungsträgern, wobei die mindestens eine Elektrodenanordnung mindestens eine erste Gitterelektrode und eine zweite Gitterelektrode mit korrespondierenden Öffnungen aufweist. Die erste und die zweite Gitterelektrode enthalten jeweils mindestens einen ersten elektrisch leitfähigen Gitterelektrodenbereich 110,210, wobei der mindestens eine erste Gitterelektrodenbereich 110a,b der ersten Gitterelektrode in einer ersten Lage 100 und der mindestens eine erste Gitterelektrodenbereich 210a,b der zweiten Gitterelektrode in einer zweiten Lage 200 ausgebildet sind. Die erste Lage und die zweite Lage sind innerhalb der Elektrodenanordnung in Teilchenaustrittsrichtung nacheinander angeordnet und voneinander durch einen ersten Abstand 300 entlang der Teilchenaustrittsrichtung beabstandet, wobei der mindestens eine erste Gitterelektrodenbereich 110a, b der ersten Gitterelektrode in der ersten Lage einen ersten elektrisch leitfähigen Lagenanteil 101 bildet. Darüber hinaus ist in der ersten Lage ein zweiter elektrisch leitfähiger Lagenanteil 102 ausgebildet, der elektrisch vom ersten Lagenanteil 101 isoliert ist. Der zweite Lagenanteil 102 wird durch mindestens einen zweiten elektrisch leitfähigen Gitterelektrodenbereich der ersten Gitterelektrode oder der zweiten Gitterelektrode gebildet und der zweite Lagenanteil 102 ist elektrisch leitend 301 mit dem mindestens einen ersten Gitterelektrodenbereich 210a,b der zweiten Gitterelektrode verbunden. Die erfindungsgemäße Vorrichtung zur Extraktion von Ladungsträgern stellt somit eine elektrisch schaltbare Extraktionsgitterelektrodenanordnung dar, mit deren Hilfe die Strahlcharakteristik eines Teilchenstrahls aus extrahierten Ladungsträgern verändert werden kann.
Abstract:
Non-elliptical ion beams (508) and plumes (510) of sputtered material can yield a relatively uniform wear pattern on a destination target (504) and a uniform deposition of sputtered material on a substrate assembly (506). The non-elliptical ion beams (508) and plumes (510) of sputtered material impinge on rotating destination targets (504) and substrate assemblies (506). A first example ion beam grid (302) and a second example ion beam grid (304) each have patterns of holes with an offset between corresponding holes. The quantity and direction of offset determines the quantity and direction of steering individual beamlets passing through corresponding holes in the first and second ion beam grids (302, 304). The beamlet steering as a whole creates a non-elliptical current density distribution within a cross- section of an ion beam (508) and generates a sputtered material plume (510) that deposits a uniform distribution of sputtered material onto a rotating substrate assembly (506).
Abstract:
System that focuses electron beams in an electro-static area to a laminar flow of electrons with uniform distribution of current density and extraordinary demagnification includes a body (11) that defines a boundary for an electric field, a field-forming cathode electrode system (1, 2, 3, 4), a focusing electrode system (5, 6, 7, 12), and at least one anode electrode system (8, 9, 10) in the electro-static section and a second electric field- free section including an adjustable screen system (16) arranged in an interior of the body (11). The field-forming near-cathode electrode system (1, 2, 3, 4) includes a cathode (1) electrically connected to a flat part (2) and a curvilinear part (3) electrically connected to a cylindrical part (4). The anode electrode system (8, 9, 10) includes an opening part, an anode electrically connected to a flat part (8) and a curvilinear part (9) electrically connected to a cylindrical part (10) which is similar or identical to and symmetrical with the cathode electrode system. The system parameters are calculated and created due to the CGMR conceptual method.