Abstract:
처리 용기 내에 기판을 배치하고, 기판을 가열하고, 처리 용기 내에 루테늄의 펜타디에닐 화합물 가스, 예를 들어 2,4-디메틸펜타디에닐에틸시클로펜타디에닐루테늄, 및 산소 가스를 도입하고, 가열된 기판상에서 이들 가스를 반응시켜, 기판상에 루테늄막을 성막한다. 또한, 처리 용기 내에 기판을 배치하고, 기판을 가열하고, 루테늄 화합물 가스와 이 화합물을 분해 가능한 분해 가스를, 이들의 적어도 한쪽의 유량이 주기적으로 변조하도록 도입하고, 교호로 상이한 가스 조성의 복수의 스텝을 형성하며, 이들 스텝 사이에서 상기 처리 용기 내의 퍼지를 실시하지 않고, 가열된 기판상에서 이들 가스를 반응시켜, 기판상에 루테늄막을 성막한다.
Abstract:
Disclosed is a film-forming apparatus wherein a predetermined film is formed on a wafer (W) by CVD by reacting a film-forming gas on the surface of the wafer, while heating the wafer (W) placed on a stage (22) with a heating mechanism. This film-forming apparatus also comprises a cover member (24) which is so arranged as to cover the outer portion of the wafer (W) on the stage (22) and has a base member (24a) and a low emissivity film (24b) arranged on at least the rear surface of the base member.
Abstract:
본 발명은, 진공 흡인 가능하게 되어 있는 처리 용기 내에 고융점 금속 유기 원료 가스를 공급하는 제 1 가스 공급 공정, 및 상기 처리 용기 내에 질소 함유 가스, 실리콘 함유 가스 및 탄소 함유 가스 중 어느 하나 또는 복수로 이루어진 가스를 공급하는 제 2 가스 공급 공정을 구비하고, 상기 처리 용기 내에 재치된 피처리체의 표면에, 고융점 금속의 질화물, 규화물 및 탄화물 중 어느 하나 또는 복수로 이루어진 금속 화합물막의 박막을 형성하는 성막 방법이다. 제 1 가스 공급 공정과 제 2 가스 공급 공정은 교대로 실시되고, 제 1 가스 공급 공정 중 및 제 2 가스 공급 공정 중에 있어서, 상기 피처리체의 온도가 상기 고융점 금속 유기 원료의 분해 개시 온도 이상의 온도로 유지된다.
Abstract:
A method of cleaning a powdery source supply system, by which any outflow of particles from an interior of vessel or an interior of introduction tube at film forming treatment can be prevented. Substrate treating system (10) includes powdery source supply system (12) and film forming treatment unit (11). The powdery source supply system (12) includes ampoule (14) for accommodating powdery source (13) (tungsten carbonyl); carrier gas supply unit (16) for supplying a carrier gas into the ampoule (14); powdery source introduction tube (17) for connection of the ampoule (14) and the film forming treatment unit (11); purge tube (19) branched from the powdery source introduction tube (17); and opening or closing valve (22) for opening or closing of the powdery source introduction tube (17). When the opening or closing valve (22) is opened and the interior of the purge tube (19) is evacuated prior to film forming treatment, the carrier gas supply unit (16) feeds a carrier gas so that the viscous force acting on particles by the carrier gas is greater than the viscous force acting on particles by the carrier gas at film forming treatment.
Abstract:
After a thin film is deposited on a treatment surface of a wafer and the wafer is transferred out of a treatment chamber, a contact projection of a clamp is brought into contact with a susceptor to heat the clamp. Next, a wafer is disposed on the susceptor by elevating the clamp when the wafer, on which a thin film is not deposited, is transferred in. Thereafter, the clamp is brought into contact with the wafer and the wafer is stabilized to a predetermined temperature. Thereafter, a thin film is deposited on a treatment surface of the wafer.
Abstract:
a first gas-feeding step in which an organic raw-material gas for a high-melting metal is fed to a treatment vessel capable of evacuation; and a second gas-feeding step in which any one of a nitrogen-containing gas, a silicon-containing gas, and a carbon-containing gas or a gas mixture comprising two or more of these is fed to the treatment vessel. In the method, a thin metal compound film comprising any one or more of the nitrides, silicides, and carbides of the high-melting metal is formed on the surface of a work placed in the treatment vessel. The first gas-feeding step and the second gas-feeding step are alternately conducted. During the first gas-feeding step and the second gas-feeding step, the temperature of the work is kept at a temperature not lower than the decomposition initiation temperature of the organic raw material for a high-melting metal.
Abstract:
A method for depositing Ru and Re metal layers on substrates with high deposition rates, low particulate contamination, and good step coverage on patterned substrates is presented. The method includes providing a substrate in a process chamber, introducing a process gas in the process chamber in which the process gas comprises a carrier gas and a metal precursor selected from the group consisting of a ruthenium-carbonyl precursor and a rhenium-carbonyl precursor. The method further includes depositing a Ru or Re metal layer on the substrate by a thermal chemical vapor deposition process at a process chamber pressure less than about 20 mTorr.
Abstract:
A method for depositing metal layers with good surface morphology using sequential flow deposition includes alternately exposing a substrate in a process chamber to a metal-carbonyl precursor gas and a reducing gas. During exposure with the metal-carbonyl precursor gas, a thin metal layer is deposited on the substrate by thermal decomposition, and subsequent exposure of the metal layer to the reducing gas aids in the removal of reaction by-products from the metal layer. The metal-carbonyl precursor gas and a reducing gas exposure steps can be repeated until a metal layer with a desired thickness is achieved. The metal-carbonyl precursor can, for example, be selected from W(CO) 6, Ni(CO)4, MO(CO)6, C02(CO)8, Rh4(CO)12, Re2(CO)10, Cr(CO)6, and Ru3(CO)12.
Abstract:
본 발명은 감압 처리실로부터 미반응 원료 가스나 반응 부생성물 가스를 배기하기 위한 진공 펌프의 안정 가동을 보증하는 동시에 반응 부생성물을 효율적으로 회수하여 자원의 유효 이용 및 운전 비용의 절감을 도모하는 것을 목적으로 한다. 이 감압 CVD 장치는 감압 CVD법에 의해 구리의 성막(成膜)을 행하기 위한 처리실(10)과, 이 처리실(10)에 원료 가스로서 유기 구리 화합물, 예컨대 Cu(I) hfac TMVS를 공급하기 위한 원료 가스 공급부(12)와, 처리실(10)을 진공 흡기하여 배기하기 위한 진공 배기부(14)로 구성되어 있다. 진공 배기부(14)는 진공 펌프(26)와, 그 전단 및 후단에 각각 설치된 고온 트랩 장치(28) 및 저온 트랩 장치(30)로 구성되어 있다. 고온 트랩 장치(28)에서는 처리실(10)로부터의 배기 가스에 포함되어 있는 미반응 Cu(I) hfac TMVS를 분해하여 금속 구리가 트랩되고, 저온 트랩 장치(30)에서는 반응 부생성물인 Cu(II) (hfac) 2 가 트랩된다.
Abstract:
Detection of vacuum degradation in vacuum circuit breakers has been low in detection sensitivity owing to the presence of various noises besides electric discharge. Accurate detection of vacuum degradation is made possible by detecting the continuity of electric discharge occurring between the electrode and the shield as vacuum degrades, and the duration of electric discharge. It is arranged that the continuity of electric discharge is detected as a somewhat longer period of time than one cycle time of power source frequency and the duration of electric discharge is detected as a sufficiently longer period of time than one cycle time.