Abstract:
PURPOSE: An own generating multi-functional sensor and a manufacturing method thereof are provided to enable own power-generation with low consumable power and reduce the size of elements despite collecting various environmental information. CONSTITUTION: An own generating multi-functional sensor comprises an ultraviolet ray sensor(101), a temperature sensing unit(102), a humidity sensor(103), a heater(104), a gas detector unit(105), a vibration sensor(106), and a own generation unit(107). The elements are formed on one substrate(111). A laminating structure made of electrode and multi-functional materials is formed on the substrate. The sensors acquire different environmental information. The own generation unit is formed on the substrate wherein a fist bottom electrode, a multi-functional material, and a first top electrode are laminated. The own generation unit greatens electricity by applied vibration.
Abstract:
PURPOSE: A piezoelectric speaker and a manufacturing method thereof are provided to reduce the distortion of a sound in a thin vibration plate by coating a damping material layer on the vibration plate. CONSTITUTION: A piezoelectric speaker comprises a planar piezoelectric thin film(400) and a first electrode(401) formed on the upper side of the piezoelectric thin film. The piezoelectric speaker comprises a frame(409) attached to the piezoelectric thin film through adhesive materials(408) to surround the side of the piezoelectric thin film and the second electrode formed on the lower side of the piezoelectric thin film. The piezoelectric speaker comprises a signal line(407) which is formed on the fixed area of the frame and applies a voltage to the first electrode. The piezoelectric speaker comprises the first electrode and a connection unit(404) connected to the signal line. The connection unit transfers the applied voltage from the signal line to the first electrode.
Abstract:
PURPOSE: A force acoustic dipole and force acoustic multi pole array using the same controls the phase and sound pressure of the input signal. The acoustic lobe direction is steered to the particular direction. The disturbance is not given to the others. In the desired range, acoustic can be in come. CONSTITUTION: Phase and sound pressure control circuit control phase and sound pressure of the input signal. The first sound source(110) and the second sound source(120) are respectively input the input signal in which phase and sound pressure are controlled through phase and sound pressure control circuit. The first acoustic signal and the second acoustic signal of the audio frequency are outputted.
Abstract:
본 발명은, 타겟 프로브에 금속 나노입자를 부착하여 표지물질로 사용하는 경우, 상기 타겟 프로브와 고정 프로브와의 바이오 반응에 따라 상기 금속 나노입자들이 적절히 밀집된 상태에서, 광픽업 헤드로부터 적절한 세기의 레이저 광이 상기 금속 나노입자에 조사되면, 상기 금속 나노입자에 의한 광증폭 효과에 의해 더 많은 광 에너지가 상변화층에 전달되어 비정질-결정의 상변화가 더 잘 유도되는 원리를 이용한다. 따라서, 본 발명에 따르면, 타겟 프로브와 고정 프로브와의 미세한 바이오 반응에 의해 금속 나노입자의 밀도가 다소 낮은 경우에도 상변화층에 상변화가 매우 크게 유도되어 바이오 반응에 따른 정밀한 바이오 정보를 바이오칩에 기록할 수 있으며, 이에 따라 간단한 구조를 가지면서 정밀한 검출이 가능한 바이오칩 스캐닝 장치를 제작할 수 있다. 또한, 본 발명에 따르면, 광픽업 헤드의 광 검출기만으로도 상변화층으로부터 반사되는 반사율을 측정하여 상변화층에 기록된 바이오 정보를 용이하게 검출할 수 있으므로, 별도의 고정밀도 광 검출기를 구비할 필요가 없어 저가 및 소형화가 가능하다. 금속 나노입자, 광증폭, 상변화, 바이오칩, 광픽업 헤드, 반사도
Abstract:
A formation method of ZnO nanowire network pattern is provided to form ZnO nanowire network pattern and device of a desired shape and size at a low temperature with a stable yield by using a lithographic process and a sol-gel method. A formation method of ZnO nanowire network pattern comprises steps of: forming a photoresist pattern exposing a part of a substrate on the substrate; molding the ZnO nanowire network on a photoresist pattern and an exposed part of the substrate by a sol-gel method; and removing the photoresist pattern and forming the ZnO nanowire network pattern on the substrate. The step for forming the photoresist pattern comprises steps of: coating a photoresist on the substrate; exposing the photoresist; and developing the exposed photoresist.
Abstract:
본 발명은 고속 고분자 구동기의 제조방법 및 이로부터 얻은 고속 고분자 구동기에 관한 것으로, 플라즈마 처리 공정을 이용하여 이온 전도성 고분자막의 표면이 균일하게 되도록 표면 처리함으로써, 기존의 샌드 블라스팅(sand blasting), 샌드 페이퍼(sand paper) 등의 표면 처리를 거쳐 제작된 고분자 구동기보다 균일한 표면을 갖게 되어 고분자막의 팽창과 수축이 쉽게 이루어지므로, 이에 따라 반응속도가 빠르며 고변위를 갖는 고분자 구동기를 제조할 수 있다. 플라즈마 처리, 고분자 구동기, 고속, 고변위
Abstract:
본 발명은 표면 코팅된 고분자 구동기 및 그의 제조방법에 관한 것으로, 상기 표면 코팅된 고분자 구동기는 이온 전도성 고분자막; 상기 이온 전도성 고분자막의 양면에 형성된 금속전극; 및 상기 각각의 금속전극 상에 형성된 코팅층을 포함한다. 고분자 구동기의 금속전극 표면을 코팅함에 따라서, 구동기 작동시 전기 자극에 의한 용매 이동에 의해 발생되는 내부 압력에 의해 전극 표면으로 용매가 누출되는 현상을 방지할 수 있으며, 따라서 고분자 구동기의 변위 및 구동력을 개선시킬 수 있다. 고분자 구동기, 표면 코팅, 변위, 구동력, 내구성
Abstract:
A piezoelectric microphone, a speaker, a microphone-speaker integrated device, and a manufacturing method thereof are provided to deliver a sound to a specific position by using an interference phenomenon of the sound. An external square electrode is alternately formed with order of an anode(401) and a cathode(403). A pattern branched from each electrode is arranged as a serial structure. A serial polarization direction is conversely formed in a pattern structure. An outermost pattern maintains an existing parallel pattern. A pattern branched from each electrode parallel forms a second pattern. The pattern is formed in an outer part of a microphone. The pattern is serially connected, and efficiently outputs a voltage.
Abstract:
A method for manufacturing an electronic device using a nanowire is provided to reduce a manufacturing cost and a manufacturing time for the electronic device by reducing a process using an E-beam. An electrode is formed on a substrate(S11). Plural nanowires are applied on the substrate on which the electrode is formed(S12). An image with respect to the substrate on which the nanowire and the electrode are formed is captured(S13). A virtual connection line connecting the nanowire to the electrode is drawn on the image by using an electrode pattern simulated through a computer program(S14). A photoresist for an E-beam is applied onto the substrate(S15). The photoresist formed on a position corresponding to the virtual connection line and the electrode pattern is removed by an E-beam lithography process(S16). A metal layer is deposited on the substrate(S17). The photoresist remaining on the substrate is removed by a lift-off process(S18).
Abstract:
A method for fabricating a nano wire array device is provided to embody a large-scale nano wire array device even when a nano wire is not parallel with an electrode line by selectively etching a nano wore on a substrate and by patterning an electrode line in a manner that the electrode becomes vertical to the electrode line to improve a probability that the electrode is connected to the nano wire. A nano wire solution including a nano wire(50) is deposited on a substrate. A first etch region of a stripe type is formed on the substrate to pattern the nano wire. A drain electrode line(100) and a source electrode line(200) are formed at both sides of the patterned nano wire, parallel with each other. One end of a plurality of drain electrodes(110) is connected to the drain electrode line wherein the drain electrode comes in contact with at least one nano wire. One end of a plurality of source electrodes(210) is connected to the source electrode line wherein the source electrode comes in contact with the nano wire in contact with the drain electrode. A second etch region is formed between the pair of drain electrodes and source electrodes so that the pair of drain electrodes and source electrodes don't contact each other electrically. An insulation layer(800) is formed on the substrate. A gate electrode(300) is formed on the insulation layer, disposed between the source and drain electrodes in contact with the nano wire.