Abstract:
A micro piezoresistive pressure sensor and a manufacturing method thereof are provided to simplify a manufacturing process by forming a semiconductor integrated circuit for processing a sensing signal and a pressure sensor structure in one silicon board. A micro piezoresistive pressure sensor includes a silicon board(100), a cavity(110), a membrane layer(120) and a sensing layer(130). The cavity is buried in the silicon board. The membrane layer has a laminate structure of a multi layer and seals the cavity. The sensing layer is formed in the upper part of the membrane layer. One or more semiconductor integrated circuits are positioned in the part except for the cavity of the silicon board.
Abstract:
A bipolar driver circuit for detecting the vibration polarity or size of a capacitance type MEMS vibration sensor is provided to sense size or polarity of vibration with a polarity sense circuit using the electrostatic capacity - time variation operation. A bipolar driver circuit for detecting the vibration polarity or size of a capacitance type MEMS vibration sensor comprises an electrostatic capacity - time conversion unit(20) producing an enable signal having the amount of time change corresponding to the capacitance variation of the capacitance type MEMS vibration sensor(10); a vibration detection part(30) detecting polarity and size of vibration by using the enable signal; and an output unit(40) outputting polarity and size of the sensed vibration as the digital value.
Abstract:
A MEMS(Micro Electro-Mechanical System) package and a method thereof are provided to improve yield by bonding the MEMS device and a driving electronic device directly. A MEMS package comprises an MEMS device(100) and a driving electronic device(200). The MEMS device is made up of an MEMS structure(114) formed on a substrate; a first pad electrode(116) for driving the MEMS structure; a first sealing unit(118) formed at the edge portion of the substrate; and a connection unit(120) formed on the first pad electrode and the first sealing unit. The driving electronic device comprises a second pad electrode(206) and a second sealing unit(208) corresponding to the first pad electrode and the first sealing unit respectively. And the driving electronic device is bonded with the MEMS device.
Abstract:
PURPOSE: A device package and a manufacturing method thereof are provided to manufacture a small device package with low costs by sealing a MEMS(Micro Electro Mechanical System) or sensor device structure with a micro metal cover. CONSTITUTION: A device structure is positioned on the active surface of a substrate. An input pad(111i) and an output pad(111o) are located on the active surface of the substrate. A metal cover(214) has an internal space to seal the device structure on the active surface of the substrate. A junction pattern is interposed between the active surface of the substrate and the metal cover. The junction pattern includes nonconductive adhesive materials. Input and output pads are interposed between the active surface of the substrate and the junction pattern.
Abstract:
PURPOSE: A stacked semiconductor device packages and a method for fabricating the same are provided to stack semiconductor devices using an adhesive material film with a function which removes an oxidization film of a penetration electrode or/and a bump, thereby simplifying complex processes while increasing mechanical reliability. CONSTITUTION: A penetration hole penetrates at least a part of a semiconductor device(120a,120b). The penetration hole is filled with a penetration electrode(140a,140b). The penetration electrode is formed of a compound of metals. A solder bump(175a,175b) is formed on at least one end of the penetration electrode. An insulating layer(125a,125b) is interposed between a sidewall of the penetration hole and the penetration electrode.
Abstract:
A piezoelectric micro electro-mechanical system switch, an array of the switches, and a method for fabricating the same are provided to improve the signal isolation through the separation of an RF transmission line by controlling a contact connection portion by using the at least two cantilevers. A semiconductor substrate(100) has a groove(105), and a support(115) is formed on the semiconductor substrate and the groove. An actuator(150b) is formed on the support, and has a piezoelectric layer(125). A switching unit is formed on the support on one side of the actuator and the height of the switching unit is changed by the variation of the piezoelectric layer of the actuator. Radio frequency transfer lines(230a) are arranged at a predetermined distance on the switching unit, and are separated by a predetermined interval from each other. The actuator has at least two cantilevers.
Abstract:
본 발명은 슬롯 안테나에 관한 것으로, 슬롯 안테나의 슬롯을 유전체 기판의 양면에 형성하고 상면과 하면 슬롯에서의 전계가 대체적으로 같은 방향으로 형성되도록 하는 슬롯 안테나를 제공한다. 이러한 구성을 통하여, 안테나의 소형 및 경량의 구성이 가능함과 동시에 기존의 미앤더드 슬롯 안테나에 비해 높은 이득 및 방사효율 특성을 얻을 수 있는 효과가 있다.
Abstract:
본 발명은 동작 전압을 낮추면서도 동작 속도를 향상시킬 수 있어 이동통신 분야에 적용이 가능한 미세전자기계적 시스템 기술을 이용한 고주파 소자를 제공하기 위한 것으로, 이를 위해 본 발명은, 표면 일부가 식각되어 동공이 형성된 기판; 상기 기판 상에 지지되며, 그 일부가 상기 동공 상부에 배치되어 상기 기판과 비접촉 상태를 유지하며 엑츄에이터를 이루는 제1전극; 및 상기 기판의 주면과 일정 간격 만큼 이격된 채로 상기 제1전극과 그 일부가 오버랩되어 엑츄에이터를 이루는 제2전극을 구비하며, 상기 제1전극과 상기 제2전극 간에 유발된 정전기적 인력에 의해 상기 제1전극과 상기 제2전극의 접점을 이루는 MEMS 기술을 이용한 고주파 소자를 제공한다. 또한, 본 발명은, 표면 일부가 식각되어 동공이 형성된 기판; 상기 기판 상에 지지되며, 그 일부가 상기 동공 상부에 배치되어 상기 기판과 비접촉 상태를 유지하며 엑츄에이터를 이루는 제1전극; 상기 기판의 주면과 일정 간격 만큼 이격된 채로 상기 제1전극과 그 일부가 오버랩되어 엑츄에이터를 이루는 제2전극; 및 상기 기판의 주면과 일정 간격 만큼 이격된 채로 상기 제2전극과 그 일부가 오버랩되어 엑츄에이터를 이루는 제3전극을 구비하며, 상기 제1전극과 상기 제2전극 간의 유발된 정전기적 인력과 상기 제2전극과 상기 제3전극 간의 정전기적 척력에 의해 상기 제1전극과 상기 제2전극의 접점을 이루는 MEMS 기술을 이용한 고주파 소자를 제공한다.
Abstract:
PURPOSE: A slot antenna is provided to achieve improved gain and radiation efficiency by forming slots on both sides of a dielectric substrate and connecting the slots and ground surfaces through conductor walls or conducting via holes. CONSTITUTION: A slot antenna comprises the first dielectric substrate(101) and the second dielectric substrate(102) laminated on the first dielectric substrate. The first dielectric substrate includes slots(103) formed on upper and lower surfaces of the first dielectric substrate; ground surfaces(104) formed on the upper and lower surfaces of the first dielectric substrate so as to define the slots; and the first connection portion for connecting the ground surfaces formed on the upper and lower surfaces of the first dielectric substrate. The second dielectric substrate includes a feeder line(105) formed at a lower surface of the second dielectric substrate so as to feed electromagnetic field energy; and the second connection portion for connecting the feeder line and the ground surfaces formed at the lower surface of the first dielectric substrate. The first connecting portion and/or the second connecting portion include one or more conducting via holes(106) formed in the dielectric substrates, or conductor walls(107) arranged at side surfaces of the dielectric substrates.
Abstract:
반도체 소자 적층 패키지가 제공된다. 이 패키지는 각각 적어도 하나의 관통 홀 및 적어도 관통 홀을 채우는 관통 전극을 포함하되, 관통 전극들에 의해 서로 전기적으로 연결되는 적층된 반도체 소자들, 관통 전극들의 연결 부위를 제외한 적층된 반도체 소자들 사이에 제공된 접착 물질막, 및 적층된 반도체 소자들이 실장되고 본딩 전극을 갖는 상부면 및 상부면에 대향하는 하부면을 갖는 인쇄 회로 기판을 포함한다. 관통 전극은 금속간 화합물이고, 그리고 적층된 반도체 소자들 중 최하부 반도체 소자의 관통 전극과 인쇄 회로 기판의 본딩 전극은 서로 전기적으로 연결된다. 반도체, 실리콘, 관통 전극, 금속간 화합물, 적층