Abstract:
A programmable logic device has many regions of programmable logic, together with relatively general-purpose, programmable, interconnection resources that can be used to make interconnections between virtually any of the logic regions. In addition, various types of more local interconnection resources are associated with each logic region for facilitating the making of interconnections between adjacent or nearby logic regions without the need to use the general-purpose interconnection resources for those interconnections. The local interconnection resources support flexible clustering of logic regions via relatively direct and therefore high-speed interconnections, preferably in both horizontal and vertical directions in the typically two-dimensional array of logic regions. The logic region clustering options provided by the local interconnection resources are preferably boundary-less or substantially boundary-less within the array of logic regions.
Abstract:
A programmable logic integrated circuit device (10) has a plurality of regions (20) of programmable logic disposed on the device in a plurality of intersecting rows and columns of such regions. Interconnection resources (e.g., interconnection conductors, signal buffers/drivers, programmable connectors, etc.) are provided on the device for making programmable interconnections to, from and/or between the regions. At least some of these interconnection resources are provided in two forms that are architecturally similar (e.g., with similar and substantially parallel routing) but that have significantly different signal propagation speed characteristics. For example, a major or larger portion of such dual-form interconnection resources (200a, 210a, 230a) may have what may be termed normal signal speed, while a smaller minor portion (200b, 210b, 230b) may have significantly faster signal speed. Secondary (e.g., clock and clear) signal distribution may also be enhanced, and so may be input/output circuitry and cascade connections between adjacent or nearby logic modules on the device.
Abstract:
The design of logic for implementation in programmable logic array integrated circuit devices is facilitated by allowing various characteristics of modules in the logic design to be parameterized. Specific values for a parameter can be "inherited" by a logic module from other logic higher in the hierarchy of the logic design. Default values for parameters can also be provided. The user can design his or her own parameterized modules, and logic designs can be recursive, meaning that a logic module can make use of other instances of itself.
Abstract:
A programmable logic device has many regions of programmable logic, together with relatively general-purpose, programmable, interconnection resources that can be used to make interconnections between virtually any of the logic regions. In addition, various types of more local interconnection resources are associated with each logic region for facilitating the making of interconnections between adjacent or nearby logic regions without the need to use the general-purpose interconnection resources for those interconnections. The local interconnection resources support flexible clustering of logic regions via relatively direct and therefore high-speed interconnections, preferably in both horizontal and vertical directions in the typically two-dimensional array of logic regions. The logic region clustering options provided by the local interconnection resources are preferably boundary-less or substantially boundary-less within the array of logic regions.
Abstract:
A programmable logic device has many regions of programmable logic, together with relatively general-purpose, programmable, interconnection resources that can be used to make interconnections between virtually any of the logic regions. In addition, various types of more local interconnection resources are associated with each logic region for facilitating the making of interconnections between adjacent or nearby logic regions without the need to use the general-purpose interconnection resources for those interconnections. The local interconnection resources support flexible clustering of logic regions via relatively direct and therefore high-speed interconnections, preferably in both horizontal and vertical directions in the typically two-dimensional array of logic regions. The logic region clustering options provided by the local interconnection resources are preferably boundary-less or substantially boundary-less within the array of logic regions.
Abstract:
A programmable logic device has a plurality of super-regions of programmable circuitry disposed on the device in a two-dimensional array of such super-regions. Each super-region includes a plurality of regions of programmable logic and a region of programmable memory. Each logic region includes a plurality of subregions of programmable logic. Each super-region has associated interconnection resources for allowing communication between the logic and memory regions of that super-region without the need to use, for such relatively local interconnections, the longer-length inter-super-region interconnection resources that are also provided on the device.
Abstract:
PROBLEM TO BE SOLVED: To provide interconnection resources to be applied to a programmable logic device for accelerating an operating speed of a programmable logic array integrated circuit. SOLUTION: A programmable logic integrated circuit device (10) has a plurality of regions (20) of programmable logic disposed on the device in a plurality of intersecting rows and columns of such regions. Interconnection resources (e.g., interconnection conductors) are provided for making programmable interconnection to, from and/or between the regions. At least some of these interconnection resources are provided in two forms that are architecturally similar but that have significantly different signal propagation speed characteristics. For example, a major or larger portion of such dual-form interconnection resources (200a, 210a, 230a) may have what may be termed normal signal speed, while a smaller minor portion (200b, 210b, 230b) may have significantly faster signal speed. COPYRIGHT: (C)2007,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To provide interconnection resources applied to programmable logic devices for accelerating an operating speed of a programmable logic array integrated circuit device. SOLUTION: A programmable logic integrated circuit (10) has a plurality of regions of programmable logic (20) disposed on the device in a plurality of intersecting rows and columns of such regions. Interconnection resources (e.g., interconnection conductors, etc.) are provided for making programmable interconnections to, from and/or between the regions. At least some of these interconnection resources are provided in two forms having architecturally similar but significantly different signal propagation speed characteristics. For example, a major or larger portion of such dual-form interconnection resources (200a, 210a, 230a) may have what may be termed normal signal speed, while a smaller minor portion (200b, 210b, 230b) may have significantly faster signal speed. COPYRIGHT: (C)2009,JPO&INPIT