Abstract:
The present disclosure provides a light-emitting device. The light-emitting device comprises a light-emitting stack comprising an active layer and a first surface comprising a roughened area; a smoothing layer on the first surface, wherein the smoothing layer has a surface smoother than the first surface; and a transparent conductive layer on the smoothing layer. A method for forming the light-emitting device is also disclosed.
Abstract:
A light-emitting device comprises a carrier; a first semiconductor element formed on the carrier and comprising a first semiconductor structure and a second semiconductor structure, wherein the second semiconductor structure is closer to the carrier than the first semiconductor structure is, the first semiconductor structure comprises a first active layer emitting a first light having a first dominant wavelength during a normal operation, and the second semiconductor structure comprises a second active layer; and a bridge on a side surface of the second active layer of the second semiconductor structure.
Abstract:
A light-emitting device is provided. The light-emitting device comprises: a light-emitting stack having an active layer emitting first light having a peak wavelength λ nm; and an adjusting element stacked electrically connected to the active layer in series for tuning a forward voltage of the light-emitting device; wherein the forward voltage of the light-emitting device is between (1240/0.8λ) volt and (1240/0.5λ) volt.
Abstract:
A light-emitting device of an embodiment of the present application comprises a substrate; a first semiconductor light-emitting structure formed on the substrate, wherein the first semiconductor light-emitting structure comprises a first semiconductor layer having a first conductivity type, a second semiconductor layer having a second conductivity type and a first active layer formed between the first semiconductor layer and the second semiconductor layer, wherein the first active layer is capable of emitting a first light having a first dominant wavelength; and a first thermal-sensitive layer formed on a path of the first light, wherein the first thermal-sensitive layer comprises a material characteristic which varies with a temperature change.
Abstract:
A light-emitting device includes: a light-emitting stack including a first active layer emitting a first light having a first peak wavelength; a diode emitting a second light having a second peak wavelength between 800 nm and 1900 nm; and a tunneling junction between the diode and the light-emitting stack, wherein the tunneling junction includes a first tunneling layer and a second tunneling layer on the first tunneling layer, the first tunneling layer has a band gap and a thickness of the first tunneling layer is greater than a thickness of the second tunneling layer.
Abstract:
A light-emitting device comprises a light-emitting stack; a reflective structure comprising a reflective layer on the light-emitting stack and a first insulating layer covering the reflective layer; and a first conductive layer on the reflective structure; wherein the first insulating layer isolates the reflective layer from the first conductive layer.
Abstract:
A light-emitting device comprises a carrier; and a first semiconductor element comprising a first semiconductor structure and a second semiconductor structure, wherein the second semiconductor structure is closer to the carrier than the first semiconductor structure is to the carrier, the first semiconductor structure comprises a first MQW structure configured to emit a first light having a first dominant wavelength during normal operation, and the second semiconductor structure comprises a second MQW structure configured not to emit light during normal operation.
Abstract:
A light-emitting element includes a reflective layer; a first transparent layer on the reflective layer; a light-emitting stack having an active layer on the first transparent layer; and a cavity formed in the first transparent layer.
Abstract:
A light-emitting device is provided. comprises: a light-emitting stack comprising an active layer emitting a first light having a first peak wavelength λ nm; and an adjusting element stacked on and electrically connected to the active layer, wherein the adjusting element comprises a diode emitting a second light having a second peak wavelength between 800 nm and 1900 nm; wherein a forward voltage of the light-emitting device is between (1240/0.8λ) volt and (1240/0.5λ) volt, and a ratio of the intensity of the first light emitted from the active layer at the first peak wavelength to the intensity of the second light emitted from the diode at the second peak wavelength is greater than 10 and not greater than 1000.
Abstract:
An optoelectronic element comprises a semiconductor stack comprising an active layer, wherein the semiconductor stack has a first surface and a second surface opposite to the first surface; a first transparent layer on the second surface; a plurality of cavities in the first transparent layer; and a layer on the first transparent layer, wherein the first transparent layer comprises oxide or diamond-like carbon.