Abstract:
A micro-electromechanical (MEM) RF switch provided with a deflectable membrane (60) activates a switch contact or plunger (40). The membrane incorporates interdigitated metal electrodes (70) which cause a stress gradient in the membrane when activated by way of a DC electric field. The stress gradient results in a predictable bending or displacement of the membrane (60), and is used to mechanically displace the switch contact (30). An RF gap area (25) located within the cavity (250) is totally segregated from the gaps (71) between the interdigitated metal electrodes (70). The membrane is electrostatically displaced in two opposing directions, thereby aiding to activate and deactivate the switch. The micro-electromechanical switch includes: a cavity (250); at least one conductive path (20) integral to a first surface bordering the cavity; a flexible membrane (60) parallel to the first surface bordering the cavity (250), the flexible membrane (60) having a plurality of actuating electrodes (70); and a plunger (40) attached to the flexible membrane (60) in a direction away from the actuating electrodes (70), the plunger (40) having a conductive surface that makes electric contact with the conductive paths, opening and closing the switch.
Abstract:
A micro-electromechanical switch (MEMS) having a deformable elastomeric element (1) which exhibits a large change in conductivity with a small amount of displacement. The deformable elastomeric element (1) is displaced by an electrostatic force that is applied laterally resulting in a small transverse displacement. The transversal displacement, in turn, pushes a metallic contact (7) against two conductive paths (5, 6), allowing passage of electrical signals. The elastomer (1) is provided on two opposing sids with embedded metallic elements (9, 10), such as impregnated metallic rods, metallic sheets, metallic particles, or conductive paste. Actuation electrodes (18, 8) are placed parallel to the conductive sides of the elastomer. A voltage applied between the conductive side of the elastomer and the respective actuation electrodes (18, 8) generate the electrostatic attractive force that compresses the elastomer (1), creating the transverse displacement that closes the MEMS. The elastomeric based MEMS extends the lifetime of the switch by extending fatigue life of the deformable switch elements.
Abstract:
Planar cavity Micro-Electro-Mechanical System (MEMS) structures, methods of manufacture and design structure are provided. The method includes forming at least one Micro-Electro-Mechanical System (MEMS) cavity (60a, 60b) having a planar surface using a reverse damascene process.
Abstract:
Micro-Electro-Mechanical System (MEMS) structures, methods of manufacture and design structures are provided. The method of forming a MEMS structure includes forming fixed actuator electrodes (115) and a contact point on a substrate. The method further includes forming a MEMS beam (100) over the fixed actuator electrodes and the contact point. The method further includes forming an array of actuator electrodes (105') in alignment with portions of the fixed actuator electrodes, which are sized and dimensioned to prevent the MEMS beam from collapsing on the fixed actuator electrodes after repeating cycling. The array of actuator electrodes are formed in direct contact with at least one of an underside of the MEMS beam and a surface of the fixed actuator electrodes.
Abstract:
A method of forming at least one Micro-Electro-Mechanical System (MEMS) cavity (60b) includes forming a first sacrificial cavity layer (18) over a wiring layer (14) and substrate (10). The method further includes forming an insulator layer (40) over the first sacrificial cavity layer. The method further includes performing a reverse damascene etchback process on the insulator layer. The method further includes planarizing the insulator layer and the first sacrificial cavity layer. The method further includes venting or stripping of the first sacrificial cavity layer to a planar surface for a first cavity (60b) of the MEMS.
Abstract:
Es werden Strukturen mikroelektromechanischer Systeme (MEMS) mit planarem Hohlraum, Herstellungsverfahren und Design-Strukturen bereitgestellt. Das Verfahren weist das Bilden mindestens eines Hohlraums (60a, 60b) eines mikroelektromechanischen Systems (MEMS), welcher eine planare Fläche aufweist, unter Anwendung eines reversen Damaszener-Verfahrens auf.
Abstract:
Ein Verfahren zum Bilden mindestens eines Hohlraums (60b) eines mikroelektromechanischen Systems (MEMS) weist das Bilden einer ersten Hohlraum-Opferschicht (18) über einer Verdrahtungsschicht (14) und einem Substrat (10) auf. Das Verfahren weist ferner das Bilden einer Isolatorschicht (40) über der ersten Hohlraum-Opferschicht auf. Das Verfahren weist ferner das Durchführen eines reversen Damaszener-Rückätzverfahrens auf der Isolatorschicht auf. Das Verfahren weist ferner das Planarisieren der Isolatorschicht und der ersten Hohlraum-Opferschicht auf. Das Verfahren weist ferner das Austreiben oder Ablösen der ersten Hohlraum-Opferschicht zu einer planaren Fläche für einen ersten Hohlraum (60b) des MEMS auf.
Abstract:
Ein Filter umfasst eine Membran, welche mehrere darin ausgebildete Nanokanäle (14) aufweist. Ein erstes Oberflächenladungsmaterial (18) ist auf einen Endabschnitt der Nanokanäle aufgebracht. Das erste Oberflächenladungsmaterial umfasst eine Oberflächenladung, um Ionen in einer elektrolytischen Lösung (20) derart elektrostatisch zu beeinflussen, dass die Nanokanäle Ionen in die elektrolytische Lösung zurückweisen, während ein Fluid der elektrolytischen Lösung durchgelassen wird. Es werden auch Verfahren zur Herstellung und Verwendung des Filters bereitgestellt.
Abstract:
A method of forming at least one Micro-Electro-Mechanical System (MEMS) includes patterning a wiring layer to form at least one fixed plate and forming a sacrificial material on the wiring layer. The method further includes forming an insulator layer of one or more films over the at least one fixed plate and exposed portions of an underlying substrate to prevent formation of a reaction product between the wiring layer and a sacrificial material. The method further includes forming at least one MEMS beam that is moveable over the at least one fixed plate. The method further includes venting or stripping of the sacrificial material to form at least a first cavity.