Abstract:
A stacked electrical steel sheet used for a stacked iron core of an automotive motor and the like required to have high-temperature bond property and high-temperature oil resistance is provided. An electrical steel sheet for stacking includes: an electrical steel sheet; and a bond-type insulating coating formed on at least one surface of the electrical steel sheet and having Martens hardness HM of 50 or more and less than 500.
Abstract:
The invention relates to a method for functionalising a surface of a solid substrate with at least one acrylic acid polymer layer, said method including the steps of: i) placing the surface in contact with a solution having of at least one acrylic acid homopolymer, a solvent and, optionally, metal salts; ii) removing the solvent from the solution in contact with the surface; and iii) binding the polymer to the surface by thermal treatment.
Abstract:
The present invention realizes a polymer substrate with hard coating layer comprising a high level of environmental resistance and a high level of abrasion resistance.A polymer substrate with hard coating layer is provided that comprises a polymer substrate (60) having a thickness of 1 mm to 20 mm and a hard coating layer (70,80) on the surface thereof. Here, in this polymer substrate with hard coating layer, the hard coating layer (70,80) is laminated on the surface of the polymer substrate, contains as a main component thereof a hydrolysis-condensation product of an organic silicon compound, has a thickness of 0.1 μm to 20 μm, makes direct contact with a cured underlayer on the opposite side of the polymer substrate, is formed from an organic silicon compound by PE-CVD, and satisfies all of the following requirements (a) to (c): (a) film thickness of the silicon oxide layer is within the range of 3.5 μm to 9.0 μm, (b) maximum indentation depth of the surface of the silicon oxide layer as determined by measuring nanoindentation under conditions of a maximum load of 1 mN is 150 nm or less, and (c) the value of critical compression ratio K of the silicon oxide layer, as defined by formula (1) in a 3-point bending test of the polymer substrate with hard coating layer that imparts indentation displacement in which the surface laminated with the silicon oxide layer becomes concave, is 0.975 or less.
Abstract:
A manufacturing facility is provided for manufacturing a product on a foil (FO). The manufacturing facility comprises a deposition zone (10) formed by a clean room wherein at least a first and a second deposition facility (21, 22) are arranged for depositing a layer of a material on the foil. The manufacturing facility further comprises at least one processing facility (31) for processing the deposited layer, said processing facility being arranged outside said deposition zone and comprising a processing trajectory with a first path (31a) away from said deposition zone, towards a turning facility (41) and with a second path (31b) from said turning facility back towards said deposition zone.
Abstract:
Provided is a method for readily forming a coating film on a surface of a substrate, that has an excellent applicability and is uniform or homogenous and has a good appearance. The present invention is a method for forming a coating film on a surface of a substrate. The method comprises the steps of: applying an aqueous coating composition to a surface of the substrate to form a liquid film, and drying the liquid film to form a dry film. The liquid film has a fine concave-convex shape including a plurality of convex parts and a plurality of concave parts. In the step of forming the dry film, the liquid film is dried to form the dry film in which the fine concave-convex shape of the liquid film is conserved.
Abstract:
Cements, such as alkali activated binder, may be used as coatings on proppants, such as sand, to improve the strength thereof. The resulting chemically bonded phosphate ceramic (CBPC) coated proppants show increased compressive strength between about 60 to about 130 MPa, as well as produced fines of lower than about 10 wt % at 10,000 psi closure stress.
Abstract:
A method for coating metallic surfaces of substrates with surfaces of aqueous coating) compositions in the form of a dispersion and/or a suspension containing at least one stabilized binder and a gelling agent, the cations having been dissolved out of the metallic surface of the substrate in a pretreatment stage and/or during the contacting. The invention further relates to such a coating based on an ionogenic gel, in which the coating is formed by a process further described herein.
Abstract:
The field of the invention relates to systems and methods for surface treatments, and more particularly to systems and methods for surface treatments, modifications or coatings using micro- and nano-structure particles for both super-hydrophobic and super-oleophobic properties. In one embodiment, a method of treating surfaces to impart both super-hydrophobic and super-oleophobic properties includes the steps of pre-treating a substrate surface; assembling dual-scale nanoparticles onto the surface of the substrate; and treating the dual-scale nanoparticle coated surface with SiCl4 to cross-link the nanoparticles to each other and to the surface of the substrate creating a robust nano-structured topographic surface having both super-hydrophobic and super-oleophobic properties.
Abstract:
A substrate processing method includes a coating step that applies a coating liquid to a substrate having a front surface on which a pattern is formed, thereby forming a coating film on the substrate, a film removing step that heats the substrate to gasify components of the coating film thereby to reduce a thickness of the film, and a film curing step that is performed after or simultaneously with the film removing step and that heats the substrate to cure the coating film through crosslinking reaction. The film removing step is performed under conditions ensuring that an average thickness of the cured coating film is not greater than 80% of an average thickness of the coating film before being subjected to the film removing step.
Abstract:
Embodiments described herein relate to methods of forming liquid-impregnated surfaces, and in particular to methods of preparing solid particle solutions for forming textured surfaces which can be impregnated with an impregnating liquid to form a liquid-impregnated surface. In some embodiments, a method of forming a textured surface includes dissolving a solid in a solvent to form a solution. The solid has a concentration, which is less than a first saturation concentration of the solid in the solvent at a first temperature and greater than a second saturation concentration of the solid in the solvent at a second temperature. The solution is allowed to form a solid particle solution. The solid particle solution is then disposed on a surface and the solvent is allowed to evaporate to form the textured surface on the surface.