Abstract:
A sensor having a several groups of detectors for gas, agent or interferent detection. The detectors may have various fields of view. The detectors may be placed in particular locations of an array and connected in a certain way as groups such that the resultant groups have essentially the same fields of view. The detectors of a group may be sensitive to the same wavelength of radiation. The array of detectors may be placed in a vacuum sealed package having a substrate and a topcap. The topcap may have bandpass filters on the inside surface over the respective filters for selecting the wavelength of radiation that each detector may detect.
Abstract:
A system to provide radiant energy of selectable spectral characteristic (e.g. a selectable color combination) uses an integrating cavity to combine energy of different wavelengths from different sources. The cavity has a diffusely reflective interior surface and an aperture for allowing emission of combined radiant energy. Sources of radiant energy of different wavelengths, typically different-color LEDs, supply radiant energy into the interior of the integrating cavity. In the examples, the points of entry of the energy into the cavity typically are located so that they are not directly visible through the aperture. The cavity effectively integrates the energy of different wavelengths, so that the combined radiant energy emitted through the aperture includes the radiant energy of the various wavelengths. The apparatus also includes a control circuit coupled to the sources for establishing output intensity of radiant energy of each of the sources. Control of the intensity of emission of the sources sets the amount of each wavelength of energy in the combined output and thus determines a spectral characteristic of the radiant energy output through the aperture.
Abstract:
An individualized modeling equation for predicting a patient's blood glucose values is generated as a function of non-invasive spectral scans of a body part and an analysis of blood samples from the patient, and is stored on a central computer. The central computer predicts a blood glucose value for the patient as a function of the individualized modeling equation and a non-invasive spectral scan generated by a remote spectral device. If the spectral scan falls within the range of the modeling equation, the predicted blood glucose level is output to the patient. If the spectral scan falls outside the range of the modeling equation, regeneration of the model is required, and the patient takes a number of noninvasive scans and an invasive blood glucose level determination. The computer regenerates the individualized modeling equation as a function of the set of spectral scans and corresponding blood glucose values.
Abstract:
A spectral characteristic measuring apparatus is provided with a memory and a CPU. The memory stores a spectral profile output from a sample light sensor array when light from a lamp is received, and a plurality of spectral profiles to be output from the sensor array at each displaced position in the case where a light separator is displaced relative to a grating member of the sensor array at a certain pitch stepwise in a wavelength diffusing direction. The CPU controls the lamp to emit light in a state that a white plate for calibration is disposed as a sample, compares a spectral profile output from the sensor array for correction with each spectral profile stored in the memory, and sets a displacement amount corresponding to the spectral profile that is most approximate to the corrective spectral profile as a wavelength shift correction amount.
Abstract:
The method and apparatus of the present invention provides a system wherein light-emitting diodes (LEDs) can be tuned within a given range by selecting their operating drive current in order to obtain a precise wavelength. The present invention further provides a manner in which to calibrate and utilize an LED probe, such that the shift in wavelength for a known change in drive current is a known quantity. In general, the principle of wavelength shift for current drive changes for LEDs is utilized in order to allow better calibration and added flexibility in the use of LED sensors, particularly in applications when the precise wavelength is needed in order to obtain accurate measurements. The present invention also provides a system in which it is not necessary to know precise wavelengths of LEDs where precise wavelengths were needed in the past. Finally, the present invention provides a method and apparatus for determining the operating wavelength of a light emitting element such as a light emitting diode.
Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of teeth are disclosed. Perimeter receiver fiber optics preferably are spaced apart from a source fiber optic and receive light from the surface of the object/tooth being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object/tooth being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing dental prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a patient data base. Such methods and implements may be desirably utilized for purposes of detecting and preventing counterfeiting or the like. Preferably, a two stage spectral separation is utilized, preferably utilizing a diffraction grating and interference filters.
Abstract:
An apparatus for measuring a spectral characteristic of a fluorescent sample, being provided with: a first illuminator for emitting a beam in a wavelength range including the ultraviolet spectrum; a second illuminator for emitting a beam in a wavelength range longer than a first cutoff wavelength; a spectral radiance factor measuring device for measuring first and second total spectral radiance factors of a fluorescent sample by illuminating the fluorescent sample by the first illumination device and second illumination device, respectively; a memory for storing weight coefficients for weighting first and second total spectral radiance factors; and a calculator for calculating a total spectral radiance factor of the fluorescent sample in accordance with the following equation using measured first and second total spectral radiance factors and a weight coefficient:B.sub.t (.lambda.)=A(.lambda.).multidot.Bt.sub.1 (.lambda.)+{1-A(.lambda.)}.multidot.Bt.sub.2 (.lambda.)wherein:Bt(.lambda.): Total spectral radiance factor of the fluorescent sampleA(.lambda.): Weight coefficientBt.sub.1 (.lambda.): First total spectral radiance factorBt.sub.2 (.lambda.): Second total spectral radiance factor.
Abstract:
The method and apparatus of the present invention provides a system wherein light-emitting diodes (LEDs) can be tuned within a given range by selecting their operating drive current in order to obtain a precise wavelength. The present invention further provides a manner in which to calibrate and utilize an LED probe, such that the shift in wavelength for a known change in drive current is a known quantity. In general, the principle of wavelength shift for current drive changes for LEDs is utilized in order to allow better calibration and added flexibility in the use of LED sensors, particularly in applications when the precise wavelength is needed in order to obtain accurate measurements. The present invention also provides a system in which it is not necessary to know precise wavelengths of LEDs where precise wavelengths were needed in the past. Finally, the present invention provides a method and apparatus for determining the operating wavelength of a light emitting element such as a light emitting diode.
Abstract:
A conical illuminator for use in colorimetry, spectrophotometry, densitometry or sensitometry. In a preferred embodiment, light from a source such as a pulsed xenon lamp is integrated within a integrating chamber. The light source may be placed in a second integrating chamber adjacent to the aforementioned integrating chamber. Alternatively, the lamp may be placed directly within the integrating chamber. The light is emitted through an exit port and conformed to a conical configuration, according to a pre-selected standard, via an annular stop. An imaging optic relays the conformed light uniformly onto a sample plane. The annular stop is placed at or near the tangential focal length of the imaging optic. The annular stop may be coated with a light absorbing coating, or can be formed with a grooved or mirrored surface. Alternatively, in lieu of an integrating chamber, a diffuser may be employed for homogenizing the light. Various configurations of the imaging optic and annular stop are possible.
Abstract:
FLUORINATED ALIPHATIC LONG CHAIN ADDITION POLYMERS COMPRISED OF AT LEAST ONE MONOMER HAVING AT LEAST ONE FLUORINE ATOM ATTACHED TO A CHAIN CARBON ATOM ARE USED IN VARIOUS ENVIRONMENTS FOR THEIR ABILITY TO REFLECT A HIGH PERCENTAGE OF INCIDENT LIGHT HAVING A WAVE LENGTH IN THE 2400 TO 8000 ANGSTROM REGION . THESE REFLECTANCE POLYMERS MAY BE IN PRESSED POWDER FORM OR IN FILM FORM AND THUS ARE ESPECIALLY APPLICABLE AS REFLECTANE STANDARDS AND REFLECTANE COATINGS PARTICULARLY IN LIGHT INTEGRATING SPHERES OF SPECTROPHOTOMERTERS.