Abstract:
Methods of treating, preventing and/or managing macular degeneration are disclosed. Specific embodiments encompass the administration of a selective cytokine inhibitory drug, or a pharmaceutically acceptable salt, solvate, hydrate, stereoisomer, clathrate, or prodrug thereof, alone or in combination with a second active agent and/or surgery. Pharmaceutical compositions, single unit dosage forms, and kits suitable for use in methods of the invention are also disclosed.
Abstract:
A housing 20 is equipped for supporting, from a side, a platform of a wavelength selection device comprising an input/output port 10, a collimator 11, an expanding optical system 12, a spectroscopic element, a collecting optical system 14 and a micro electro mechanical system (MEMS) mirror array 15. Because the above noted optical member is supported from the side only, influences of a thermal expansion is limited to the height direction of the optical member and the optical axis direction. By these aspects, the influence of thermal expansion is limited to a two-dimensional from a common three-dimensional, thereby enabling a design of a countermeasure to an influence of a thermal expansion. Also, the support from the side does not create a dead space thereby making the wavelength selection device compact.
Abstract:
A fiberscope device is disclosed which is suitable for video imaging, laser Raman spectroscopy and laser Raman spectroscopic (i.e. chemical) imaging. The fiberscope design minimizes fiber background interference arising from the laser delivery fiber optic and the coherent fiber optic light gathering bundle while maintaining high light throughput efficiency through the use of integrated spectral filters. In the fiberscope design, the laser delivery fiber optic is offset from the coherent fiber optic light gathering bundle. The laser delivery field is captured entirely by the light gathering field of view of the coherent fiber bundle. The fiberscope incorporates spectral filter optical elements that provide environmental insensitivity, particularly to temperature and moisture. The fiberscope is suited to the analysis of a wide range of condensed phase materials (solids and liquids), including the analysis of biological materials such as breast tissue lesions and arterial plaques, in such a manner to delineate abnormal from normal tissues.
Abstract:
A light fixture, using one or more solid state light emitting elements utilizes a diffusely reflect chamber to provide a virtual source of uniform output light, at an aperture or at a downstream optical processing element of the system. Systems disclosed herein also include a detector, which detects electromagnetic energy from the area intended to be illuminated by the system, of a wavelength absent from a spectrum of the combined light system output. A system controller is responsive to the signal from the detector. The controller typically may control one or more aspects of operation of the solid state light emitter(s), such as system ON-OFF state or system output intensity or color. Examples are also discussed that use the detection signal for other purposes, e.g. to capture data that may be carried on electromagnetic energy of the wavelength sensed by the detector.
Abstract:
A sensor system senses a scene and includes a dual-band imaging infrared detector lying on a beam path, wherein the infrared detector detects infrared images in a first infrared wavelength band and in a second infrared wavelength band; and a two-color cold-shield filter lying on the beam path between the infrared detector and the scene. The cold-shield filter defines a first aperture size for infrared light of the first infrared wavelength band, and a second aperture size larger than the first aperture size for infrared light of the second infrared wavelength band. The first infrared wavelength band has wavelengths less than wavelengths of the second infrared wavelength band.
Abstract:
A linearized thermal and optical model of an optical integrated circuit can be used to temperature-stabilize one or more optical elements of the circuit using active temperature regulation. To stabilize a single optical element, such as an arrayed waveguide grating (AWG), a temperature sensor and a heater can be provided proximate to the grating. Thermal and optical coefficients can be then used to select an appropriate temperature set-point for the temperature controller that receives readings from the sensor and determines the power dissipated in the heater. Multiple AWG's can be stabilized individually, using the same process and lumping cross-heating factors together with other environmental factors. Alternatively, multiple AWG's can be stabilized using fewer sensors than AWG's, by stabilizing one of the AWG's in the same manner as in the case of a single AWG, and determining power dissipated in the heaters of the remaining AWG's based on the linearized model.
Abstract:
An LED-based color measurement instrument including an illumination system and a sensing system. The illumination system includes modulated LEDs and a temperature control system for regulating the temperature of the LEDs, thereby improving the consistency of their performance. The sensing system includes a photodiode, a transimpedance amplifier, and an integrator in the first stage to cancel the effect of ambient light on the output of the first stage. The sensing system also includes a lens system for imaging a target area of the target sample onto the photo sensor in a manner so that the product of the target area times the solid angle captured by the lens system is generally uniform over a selected range of distances, thereby reducing the positional sensitivity of the instrument with respect to the target sample.
Abstract:
The method and system operate to maintain a widely tunable laser (WTL) at a selected transmission wavelength. To lock the WTL to an ITU grid line, a portion of the output beam from the WTL is routed through the etalon to split the beam into a transmission line for detection by an etalon fringe detector. Another portion of the beam is routed directly to a laser wavelength detector to determine the power of the beam. A wavelength-locking controller compares signals from the two detectors and adjusts the temperature of the etalon to align the wavelength of one of the transmission lines of the etalon with the wavelength of the output beam, then controls the WTL in a feedback loop to lock the laser to the etalon line. The wavelength-locking controller thereafter monitors the temperature of the etalon and keeps the temperature constant to prevent any wavelength drift attributable to the etalon.
Abstract:
A thermoelectrically cooled surface-enhanced Raman Spectroscopy (TEC-SERS) fiber optic probe for real-time and in-situ monitoring of volatile organic compounds in gas, liquid, and soil environments. The TEC-SERS probe comprises a sample chamber for receiving a gas sample and a fiber optic Raman probe. The sample chamber comprises an inlet having a semipermeable membrane for separating moisture from the gas sample, a SERS substrate mounted on a thermoelectric cooler, a mass flow device for providing airflow, and an output port. The fiber optic Raman probe is operably coupled to a transparent window in the sample chamber for directing an optical excitation signal to irradiate the SERS substrate and for receiving a SERS optical signal from analytes from the gas sample that are in contact with the SERS substrate.
Abstract:
A spectroscopy system is provided which is optimized for operation in the VUV region and capable of performing well in the DUV-NIR region. Additionally, the system incorporates an optical module which presents selectable sources and detectors optimized for use in the VUV and DUV-NIR. As well, the optical module provides common delivery and collection optics to enable measurements in both spectral regions to be collected using similar spot properties. The module also provides a means of quickly referencing measured data so as to ensure that highly repeatable results are achieved. The module further provides a controlled environment between the VUV source, sample chamber and VUV detector which acts to limit in a repeatable manner the absorption of VUV photons. The use of broad band data sets which encompass VUV wavelengths, in addition to the DUV-NIR wavelengths enables a greater variety of materials to be meaningfully characterized. Array based detection instrumentation may be exploited to permit the simultaneous collection of larger wavelength regions.