Abstract:
A display device and a manufacturing method thereof are provided. The display device includes a display panel and a flexible circuit board electrically connected with the display panel. The flexible circuit board includes a first circuit board, a second circuit board and a conductive portion; the first circuit board includes a first substrate, and a main contact pad, a first wire and a second wire provided on the first substrate; the second circuit board includes a second substrate, a relay contact pad and a third wire provided on the second substrate; and the conductive portion is configured for electrically connecting the main contact pad and the relay contact pad.
Abstract:
A circuit board according to an embodiment includes an insulating layer; and a lead pattern portion disposed on the insulating layer, wherein the lead pattern portion includes: a first portion disposed on the insulating layer; and a second portion extending from one end of the first portion; wherein the first portion is disposed overlapping the insulating layer in a vertical direction, wherein the second portion is disposed in an outer region of the insulating layer and does not overlap the insulating layer; and wherein the lead pattern portion has a centerline average roughness in a range of 0.05 µm to 0.5 µm or a 10-point average roughness in a range of 1.0 µm to 5.0 µm.
Abstract:
A submount for connecting a semiconductor device to an external circuit, the submount comprising: a planar substrate formed from an insulating material and having relatively narrow edge surfaces and first and second relatively large face surfaces; at least one recess formed along an edge surface; a layer of a conducting material formed on a surface of each of the at least one recess; a first plurality of soldering pads on the first face surface configured to make electrical contact with a semiconductor device; and electrically conducting connections each of which electrically connects a soldering pad in the first plurality of soldering pads to the layer of conducting material of a recess of the at least one recess.
Abstract:
A flexible substrate includes: an insulating base member; a plurality of lands formed aligned in a plurality of lines in a first direction on the base member; and a plurality of wirings formed on the base member, extending in a second direction intersecting the first direction, and connected to the plurality of lands on each line of the plurality of lines, wherein the plurality of wirings include a wiring extending between the lands aligned in the first direction, and wherein each of the plurality of lands has a planar shape longer in the second direction.
Abstract:
Provided are a nano-scale LED assembly and a method for manufacturing the same. First, a nano-scale LED device that is independently manufactured may be aligned and connected to two electrodes different from each other to solve a limitation in which a nano-scale LED device having a nano unit is coupled to two electrodes different from each other in a stand-up state. Also, since the LED device and the electrodes are disposed on the same plane, light extraction efficiency of the LED device may be improved. Furthermore, the number of nano-scale LED devices may be adjusted. Second, since the nano-scale LED device does not stand up to be three-dimensionally coupled to upper and lower electrodes, but lies to be coupled to two electrodes different from each other on the same plane, the light extraction efficiency may be very improved. Also, since a separate layer is formed on a surface of the LED device to prevent the LED device and the electrode from being electrically short-circuited, defects of the LED electrode assembly may be minimized. Also, in preparation for the occurrence of the very rare defects of the LED device, the plurality of LED devices may be connected to the electrode to maintain the original function of the nano-scale LED electrode assembly.
Abstract:
Disclosed is an attenuation reduction structure for high-frequency connection pads of a circuit board with an insertion component. The circuit board includes at least one pair of differential mode signal lines formed thereon. A substrate has upper and lower surfaces respectively provided with at least one pair of upper connection pads and lower connection pads. A first metal layer is formed on the lower surface of the substrate. The first metal layer includes an attenuation reduction grounding pattern structure. The attenuation reduction grounding pattern structure includes a hollow area and at least one protruded portion. The protruded portion extends from the first metal layer in a direction toward the lower connection pads.
Abstract:
Systems and methods for magnetic coupling. One system includes an external computing device and a connector having a conductive end. The system also includes a printed circuit board. The printed circuit board includes a connector side opposite a back side. The connector side has a contact pad with an aperture. The printed circuit board also includes a magnet positioned on the back side of the printed circuit board. The magnet provides a magnetic field configured to provide magnetic attraction forces to a connector contacting the contact pad. The printed circuit board also includes a communication terminal. The system also includes a circuit in communication with the printed circuit board through the connector and contact pad.
Abstract:
Provided is an LED lamp using a nano-scale LED electrode assembly. The LED lamp using the nano-scale LED electrode assembly may solve limitations in which, when a nano-scale LED device according to the related art stands up and is three-dimensionally coupled to an electrode, it is difficult to allow the nano-scale LED device to stand up, and when the nano-scale LED devices are coupled to one-to-one correspond to electrodes different from each other, product quality is deteriorated. Thus, the nano-scale LED device having a nano unit may be connected to the two electrodes different from each other without causing defects, and light extraction efficiency may be improved due to the directivity of the nano-scale LED devices connected to the electrodes. Furthermore, deterioration in function of the LED lamp due to the defects of a portion of the nano-scale LEDs provided in the LED lamp may be minimized, and the LED lamp may have a flexible structure and shape by using the nano-scale LED electrode assembly of which a portion is deformable according to the used purpose or position of the LED lamp.
Abstract:
In a mark forming step in a manufacturing method for a component incorporated substrate in which an electronic component is positioned with reference to a mark formed in a copper layer, when an imaginary line extending from a search center of a search range of a sensor, to an edge side of the search range is represented as a search reference line and an imaginary line extending, in a state in which a mark center, is matched with the search center, from the mark center in the same direction as the search reference line to an outer ridgeline of the mark is represented as a mark reference line, the mark formed in a shape in which the outer ridgeline of the mark is present in a position where a length of the mark reference line is in a range of 30% or more of the search reference line.
Abstract:
The invention relates to a laboratory sample instrument with a cable holding space in which a printed circuit board cable device is arranged. The printed circuit board cable device has at least one printed circuit board with first and second sides and, arranged in succession, at least one first circuit board section, at least one second circuit board section and at least one third circuit board section, and with a number of conductor tracks arranged in parallel with respect to one another and extending from a first track section arranged in the first circuit board section, via the second circuit board section to the third circuit board section, in which a second track section is arranged, wherein, in the second circuit board section, at least one conductor track is arranged on the first side of the board and at least one track is arranged on the second side.