Abstract:
In exemplary embodiments, a circuit assembly may be provided on and/or supported by an electrically conductive structure, such as a board level shield, a midplate, a bracket, a precision metal part, etc. For example, a circuit assembly may be provided on and/or supported by an outer top surface of a board level shield. In an exemplary embodiment, an assembly generally includes an electrically conductive structure configured for a first functionality in the electronic device. An electrically nonconductive layer is on at least part of the electrically conductive structure. First electrical component(s) are at least partly on the electrically nonconductive layer and configured to define at least a portion of a circuit assembly for electrical connection with one or more second electrical components of the electronic device. The electrically conductive structure may thus be configured for a second functionality in the electronic device.
Abstract:
A reduced length memory card is provided. The memory card, comprising a memory circuit, a housing for said memory circuit, said housing defining a first end, a second end opposite the first end and insertable into a port of a digital device, and opposing sidewalls between the first end and the second end, and a plurality of electrical contacts in electrical communication with said memory circuit, said contacts exposed through apertures formed in a bottom surface of the housing extending between the first end and the second end, wherein the memory card is electrically compatible with a Secure Digital (SD) standard, and wherein a length of the card extending between the first end and the second end is less than a width of the card extending between the opposing sidewalls. The memory could comprise an extraction ridge along the first end of the card and exposed when the card is inserted into the port of the digital device.
Abstract:
A manufacturing method of the thin fan includes the steps of: providing a plastic material containing a plurality of metal particles; processing the plastic material to form a housing; removing a part surface of the housing and forming a layout area and an extended circuit on the housing, wherein one terminal of the extended circuit connects to the layout area; disposing a first signal connecting structure on the housing, wherein the first signal connecting structure connects to the other terminal of the extended circuit; and disposing a metal layer on the layout area and the extended circuit.
Abstract:
A conductive element such as an antenna, for use in electronic devices, including mobile devices such as cellular phones, smartphones, personal digital assistants (PDAs), laptops, and wireless tablets. In one exemplary aspect, the present disclosure relates to a conductive antenna formed using deposition of conductive fluids as well as the method and equipment for forming the same. In one embodiment, a “thick” antenna element can be formed in one pass of a dispensing head or nozzle, thereby reducing manufacturing cost and increasing manufacturing efficiency.
Abstract:
A manufacturing method of a thin fan comprises the steps of: providing a plastic material containing a plurality of metal particles; molding the plastic material into a housing; removing a part of a surface of the housing to form a circuit layout area at the housing; and forming a metal layer in the circuit layout area.
Abstract:
An electronic component includes a frame-shaped supporting body including a heat-curable resin and surrounding a functional unit on one main surface of a substrate and so as to be separated from a periphery of the substrate on an inner side and in which a lid member is fixed to the supporting body such that an opening of the frame-shaped supporting body is sealed. The frame-shaped supporting body includes a frame-shaped supporting body main body, a first protrusion that protrudes toward an inside from the supporting body main body and a second protrusion that protrudes toward an outside from the supporting body main body at a portion where the supporting body main body and the first protrusion are continuous with each other.
Abstract:
Provided is a method for mounting a Printed Circuit Board (PCB). The method includes providing a solder cream on a predetermined region of a bottom surface of the PCB except for a region requiring insulation, mounting the PCB on a mounting region of a housing on which the PCB is to be mounted, and fixedly coupling the PCB to the housing by melting and hardening the solder cream provided on the bottom surface of the PCB.
Abstract:
A first resin layer is provided with a step part formed in conformity with a shape of at least part of an electrically conductive pattern, and the first resin layer and a second resin layer closely adhere to each other in the step part.
Abstract:
A package comprises a body, and an electrically conductive pattern supported by said body. An interface portion is configured to receive a module to a removable attachment with the package. The electrically conductive pattern comprises, at least partly within said interface portion, a wireless coupling pattern that constitutes one half of a wireless coupling arrangement.
Abstract:
Package assemblies including a die stack and related methods of use. The package assembly includes a substrate with a first surface, a second surface, and a third surface bordering a through-hole extending from the first surface to the second surface. The assembly further includes a die stack, a conductive layer, and a lid. The die stack includes a chip positioned inside the through-hole in the substrate. A section of the conductive layer is disposed on the third surface of the substrate. A portion of the lid is disposed between the first chip and the section of the conductive layer. The conductive layer is configured to be coupled with power, and the lid is configured to be coupled with ground. The portion of the lid may act as a first plate of a capacitor, and the section of the conductive layer may act as a second plate of the capacitor.